loading Please wait. Data is being processed...

News of Inventions: 313023
Files of Inventions: 220
Groups of Inventors: 50

Friend Requests:
Private Messages:

Today's News: 38
Yesterday's News: 311

Today: 24 November 2020, Tuesday.

All latest news of Inventions in one place

Listed news of Inventions: 16 from total 313023

Filters


Welcome, Guest

News for Chemicals





#1

 

View it
Name
Description The chemistry of carbon monoxide (CO) as a ligand has evolved significantly and transition-metal carbonyl complexes have been widely used as catalysts in many important catalytic processes. Here the authors comment on the recent progress of main-group element carbonyl complexes along with their future prospects.

#Chemicals
Field # Chemicals
Updated 23 November 2020

#2

 

View it
Name
Description In this perspective, I discuss a few basic concepts in fundamental mechanistic studies of electrochemical carbon dioxide reduction. Electrochemical carbon dioxide (CO2) reduction has the potential to sustainably produce carbon-based fuels and chemicals while mitigating the increasing levels of CO2 in the atmosphere. In this comment, the author discusses a few basic concepts in the fundamental mechanistic studies of electrochemical CO2 reduction.

#Chemicals
Field # Chemicals
Updated 23 November 2020

#3

 

View it
Name
Description Glycine, an amino acid, can form in interstellar clouds without the heat of a star.

#Chemicals
Field # Chemicals
Updated 20 November 2020

#4

 

View it
Name
Description In this approach, thin spikes (NSs) of ternary nano-formulated mixed CuO/MnO2/Gd2O3 were synthesized by the hydrothermal approach for efficient detection of 3-methoxyphenyl hydrazine (3-MPHyd) chemical from various environmental samples. The NSs were systematically characterized by using XPS, EDS, TEM, FTIR, UV/vis, and XRD. The fabricated NSs onto the glassy carbon electrode (GCE) was successfully applied for the selective and sensitive detection of 3-MPHyd in the phosphate buffer system (PBS), which displayed the highest sensitivity, good selectivity with ultra-trace detection limit, high stability, good reproducibility, and quick response time. The real environmental samples were tested for validation from stand point of the ternary doped nanomaterials for sensing in the practical applications using by electrochemical method.

#Chemicals
Field # Chemicals
Updated 20 November 2020

#5

 

View it
Name
Description Artificial magnetic molecules can host several spin qubits, which could then implement small-scale algorithms. In order to become of practical use, such molecular spin processors need to increase the available computational space and warrant universal operations. Here, we design, synthesize and fully characterize dissymetric molecular dimers hosting either one or two Gadolinium(III) ions. The strong sensitivity of Gadolinium magnetic anisotropy to its local coordination gives rise to different zero-field splittings at each metal site. As a result, the [LaGd] and [GdLu] complexes provide realizations of distinct spin qudits with eight unequally spaced levels. In the [Gd2] dimer, these properties are combined with a Gd-Gd magnetic interaction, sufficiently strong to lift all level degeneracies, yet sufficiently weak to keep all levels within an experimentally accessible energy window. The spin Hamiltonian of this dimer allows a complete set of operations to act as a 64-dimensional all-electron spin qudit, or, equivalently, as six addressable qubits. Electron paramagnetic resonance experiments show that resonant transitions between different spin states can be coherently controlled, with coherence times TM of the order of 1 µs limited by hyperfine interactions. Coordination complexes with embedded quantum functionalities are promising building blocks for quantum computation and simulation hybrid platforms. Molecular spin processors are promising for quantum computing, but for universal applicability the available computational space needs to be expanded beyond three qubits while retaining the ability to perform universal quantum operations. Here, the authors report dissymetric molecular Gadolinium(III) dimers acting as 6-qubit quantum processors.

#Chemicals
Field # Chemicals
Updated 20 November 2020

#6

 

View it
Name
Description

#Chemicals
Field # Chemicals
Updated 20 November 2020

#7

 

View it
Name
Description As a consequence of their high instability, main-group carbonyl complexes are rare — only a few have been detected, typically in low-temperature matrices. Now, two silicon–carbonyl complexes have been isolated using innovative substituent patterns at the Si centre; their reactivity resembles that of their transition-metal counterparts.

#Chemicals
Field # Chemicals
Updated 20 November 2020

#8

 

View it
Name
Description Self-assembly is a powerful method to obtain large discrete functional molecular architectures. When using a single building block, self-assembly generally yields symmetrical objects in which all the subunits relate similarly to their neighbours. Here we report the discovery of a family of self-constructing cyclic macromolecules with stable folded conformations of low symmetry, which include some with a prime number (13, 17 and 23) of units, despite being formed from a single component. The formation of these objects amounts to the production of polymers with a perfectly uniform length. Design rules for the spontaneous emergence of such macromolecules include endowing monomers with a strong potential for non-covalent interactions that remain frustrated in competing entropically favoured yet conformationally restrained smaller cycles. The process can also be templated by a guest molecule that itself has an asymmetrical structure, which paves the way to molecular imprinting techniques at the level of single polymer chains. The majority of discrete structures obtained by self-assembly possess high symmetry, and thus low complexity: all subunits relate to their neighbours in a similar manner. Now, the spontaneous formation of complex low-symmetry assemblies produced from a single building block has been demonstrated using a systems chemistry approach. The single building block oligomerizes to form specific homomeric cyclic macromolecules that adopt a folded conformation.

#Chemicals
Field # Chemicals
Updated 20 November 2020

#9

 

View it
Name
Description TBD

#Chemicals
Field # Chemicals
Updated 20 November 2020

#10

 

View it
Name
Description High purity layered YbB2C2 powder is synthesized by a boro/carbothermic reduction method using YbBO3, B4C and graphite powders as raw materials. Its X-ray diffraction data are presented, and the space group P4/mbm (No. 127) is confirmed. The lattice parameters are a = b = 5.3389 Å and c = 3.5683 Å, and the atom positions are Yb (0.0000, 0.0000, 0.0000), B (0.3621, 0.8621, 0.5000), and C (0.1606, 0.6606, 0.5000). Porous YbB2C2 ceramics have a high porosity in the range of 69.89–58.11% and a high compressive strength in the range of 19.49–63.44 MPa. Furthermore, the as-produced porous YbB2C2 ceramics show unique chemical activity. Porous YbB2C2 ceramic with a porosity of 69.89% emits so much heat that it can burn a piece of paper when this ceramic is wetted by water. The rate of reaction between the porous YbB2C2 ceramic and water can be simply controlled by adjusting the porosity. The solid reaction products are YbB6, C and an unknown amorphous phase.

#Chemicals
Field # Chemicals
Updated 19 November 2020

#11

 

View it
Name
Description Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.

#Chemicals
Field # Chemicals
Updated 19 November 2020

#12

 

View it
Name
Description The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed. Stimuli-responsive supramolecular systems have emerged as tools for engineering functional lipid-bilayer membranes. This Review highlights their use in controlling binding, ion transport and signalling in membranes.

#Chemicals
Field # Chemicals
Updated 19 November 2020

#13

 

View it
Name
Description A team of researchers from the University of Chemistry and Technology Prague, Yonsei University and the Brno University of Technology has developed a micro-robot with chemically encoded intelligence that can remove hormonal ...

#Chemicals
Field # Chemicals
Updated 19 November 2020

#14

 

View it
Name
Description The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1–3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler–Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9–11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13–15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance. Spectroscopic studies and theoretical calculations of the electrocatalytic oxygen evolution reaction establish that reaction rates depend on the amount of charge stored in the electrocatalyst, and not on the applied potential.

#Chemicals
Field # Chemicals
Updated 18 November 2020

#15

 

View it
Name
Description Today, the world’s climate change is a growing problem, plant carbon sequestration is one of the effective ways to mitigate climate change by reducing greenhouse gases, mostly carbon gases. Dicranopteris linearis (D. linearis), a common fern species in the tropic or subtropic ecoregions, has been recently recognized as a potential feedstock to produce highly porous biochar. This study aims to enhance the specific surface area (SSA) and pore volumes of biochars derived from the D. linearis by H3PO4 activation and examine electrical properties of the activated biochars and their possible usage for the electric double-layer capacitor (EDLC) electrode. The treated raw fern was activated with H3PO4 85% by the three different mixing ratios 1:0, 1:1, and 1:3 (w/w) and then pyrolysis under N2 flow maintained at 500 °C for 1 h. The performance as the electrode for an EDLC was evaluated in 1 mol L−1 H2SO4 solution for the H3PO4-activated samples. The SSA and pore volumes were drastically increased after activation. The maximum SSA and pore volume were 1212 m2 g−1 and 1.43 cm3 g−1, respectively for the biochar activated at 400 °C with a weight mixing ratio 1:3 (w/w) between the fern and H3PO4 acid while these values of the biochar at 400 °C were 12 m2 g−1 and 0.02 cm3 g−1, respectively. The biochar activated at 600 °C with the mixing ratio 1:1 (w/w) showed the maximum capacitance value, ca. 108 F g−1 at 1 mV s−1. The activation using H3PO4 showed a positive tendency to enhance electrochemical properties and it could be a premise toward a higher performance of EDLC from the D. linearis derived activated biochar.

#Chemicals
Field # Chemicals
Updated 17 November 2020

#16

 

View it
Name
Description Here, electro-chemical properties of BN and BP nanocages as anodes in metal-ion batteries are examined. The effect of halogens adoption of BN and BP-NCs on electro-chemical properties of M-IBs are investigated. Results showed that the BP nanocages as anode electrode in M-IBs has higher efficiency than BN nanocages and the K-IB has higher cell voltage than N-IBs. Results indicated that the halogens adoption of BN and BP-NCs are improved the cell voltage of M-IBs. Results proved that the F-doped M-IBs have higher cell voltage than M-IBs. Finally, F-B17P18 as anodes in K-IB is proposed as suitable electrodes.

#Chemicals
Field # Chemicals
Updated 17 November 2020