loading Please wait. Data is being processed...

News of Inventions: 327613
Files of Inventions: 220
Groups of Inventors: 50

Friend Requests:
Private Messages:

Today's News: 93
Yesterday's News: 267

Today: 26 January 2021, Tuesday.

All latest news of Inventions in one place

Listed news of Inventions: 100 from total 327613

Filters


Welcome, Guest

News for Theoretical sciences





#1

 

View it
Name
Description Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#2

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#3

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#4

 

View it
Name
Description Post translational modifications (PTMs) are covalent modifications of proteins that can range from small chemical modifications to addition of entire proteins. PTMs contribute to regulation of protein function and thereby greatly increase the functional diversity of the proteome. In the heart, a few well-studied PTMs, such as phosphorylation and glycosylation, are known to play essential roles for cardiac function. Yet, only a fraction of the ~ 300 known PTMs have been studied in a cardiac context. Here we investigated the proteome-wide map of PTMs present in human hearts by utilizing high-resolution mass spectrometry measurements and a suite of PTM identification algorithms. Our approach led to identification of more than 150 different PTMs across three of the chambers in human hearts. This finding underscores that decoration of cardiac proteins by PTMs is much more diverse than hitherto appreciated and provides insights in cardiac protein PTMs not yet studied. The results presented serve as a catalogue of which PTMs are present in human hearts and outlines the particular protein and the specific amino acid modified, and thereby provides a detail-rich resource for exploring protein modifications in human hearts beyond the most studied PTMs.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#5

 

View it
Name
Description Kuschelorhynchus macadamiae is a major pest of macadamias in Australia, causing yield losses of up to 15%. Our previous studies have shown the weevil is susceptible to Beauveria bassiana and Metarhizium anisopliae. The aim of this study was to investigate horizontal transmission of both fungal species to healthy weevils from both infected adults and weevil cadavers. In a confined environment the mortality of healthy adults caused by the transmission of conidia from live fungus-infected adults was < 50%. Under similar experimental conditions, the mortality of healthy adults reached 100% when exposed to conidiated cadavers. However, when conidiated cadavers were used in more spacious environments (insect cages), the mortality of adults was < 80%. Using scanning electron microscopy, it was observed that all healthy adults had conidia attached to all external parts of the body. This suggests that although the conidia were readily transferred to the adults, the lower mortality in the larger insect cages could be the result of an unfavourable environmental factor such as low humidity. The presence of conidia attached to all the adults indicated that they did not show any discriminatory behaviour such as avoidance of conidiated cadavers infected by these two fungal species. The results from this study show that there is potential for enhanced control of adult K. macadamiae via transmission from either fungus-infected adults or conidiated cadavers and this could strengthen sustainable pest management in macadamias.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#6

 

View it
Name
Description When magnetic properties are analysed in a transmission electron microscope using the technique of electron magnetic circular dichroism (EMCD), one of the critical parameters is the sample orientation. Since small orientation changes can have a strong impact on the measurement of the EMCD signal and such measurements need two separate measurements of conjugate EELS spectra, it is experimentally non-trivial to measure the EMCD signal as a function of sample orientation. Here, we have developed a methodology to simultaneously map the quantitative EMCD signals and the local orientation of the crystal. We analyse, both experimentally and by simulations, how the measured magnetic signals evolve with a change in the crystal tilt. Based on this analysis, we establish an accurate relationship between the crystal orientations and the EMCD signals. Our results demonstrate that a small variation in crystal tilt can significantly alter the strength of the EMCD signal. From an optimisation of the crystal orientation, we obtain quantitative EMCD measurements.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 January 2021

#7

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#8

 

View it
Name
Description Head-down bed rest (HDBR) has previously been shown to alter cerebrovascular and autonomic control. Previous work found that sustained HDBR (≥ 20 days) attenuates the hypercapnic ventilatory response (HCVR); however, little is known about shorter-term effects of HDBR nor the influence of HDBR on the hypoxic ventilatory response (HVR). We investigated the effect of 4-h HDBR on HCVR and HVR and hypothesized attenuated ventilatory responses due to greater carotid and brain blood flow. Cardiorespiratory responses of young men (n = 11) and women (n = 3) to 5% CO2 or 10% O2 before and after 4-h HDBR were examined. HDBR resulted in lower HR, lower cardiac output index, lower common carotid artery flow, higher SpO2, and higher pulse wave velocity. After HDBR, tidal volume and ventilation responses to 5% CO2 were enhanced (all P < 0.05), yet no other changes in cardiorespiratory variables were evident. There was no influence of HDBR on the cardiorespiratory responses to hypoxia (all P > 0.05). Short-duration HDBR does not alter the HVR, yet enhances the HCVR, which we hypothesize is a consequence of cephalic CO2 accumulation from cerebral congestion.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#9

 

View it
Name
Description Behavioural interventions tailored to psychological characteristics of an individual can effectively achieve risk-reducing behaviour. The impact of tailored interventions on population-level chlamydia prevalence is unknown. We aimed to assess the impact on overall chlamydia prevalence five years after the introduction of an intervention aimed at increasing self-efficacy, social norms, attitudes and intentions towards condom use (i.e., condom intervention), and an intervention aimed at increasing health goals and decreasing impulsiveness (i.e., impulsiveness intervention). A pair model, informed by longitudinal psychological and behavioural data of young heterosexuals visiting sexual health centers, with susceptible-infected-susceptible structure was developed. The intervention effect was defined as an increased proportion of each subgroup moving to the desired subgroup (i.e., lower risk subgroup). Interventions tailored to subgroup-specific characteristics, assuming differential intervention effects in each subgroup, more effectively reduced overall chlamydia prevalence compared to non-tailored interventions. The most effective intervention was the tailored condom intervention, which was assumed to result in a relative reduction in chlamydia prevalence of 18% versus 12% in the non-tailored scenario. Thus, it is important to assess multiple psychological and behavioural characteristics of individuals. Tailored interventions may be more successful in achieving risk-reducing behaviour, and consequently, reduce chlamydia prevalence more effectively.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#10

 

View it
Name
Description The effect of altitude on the risk of sudden infant death syndrome (SIDS) has been reported previously, but with conflicting findings. We aimed to examine whether the risk of sudden unexpected infant death (SUID) varies with altitude in the United States. Data from the Centers for Disease Control and Prevention (CDC)’s Cohort Linked Birth/Infant Death Data Set for births between 2005 and 2010 were examined. County of birth was used to estimate altitude. Logistic regression and Generalized Additive Model (GAM) were used, adjusting for year, mother’s race, Hispanic origin, marital status, age, education and smoking, father’s age and race, number of prenatal visits, plurality, live birth order, and infant’s sex, birthweight and gestation. There were 25,305,778 live births over the 6-year study period. The total number of deaths from SUID in this period were 23,673 (rate = 0.94/1000 live births). In the logistic regression model there was a small, but statistically significant, increased risk of SUID associated with birth at > 8000 feet compared with < 6000 feet (aOR = 1.93; 95% CI 1.00–3.71). The GAM showed a similar increased risk over 8000 feet, but this was not statistically significant. Only 9245 (0.037%) of mothers gave birth at > 8000 feet during the study period and 10 deaths (0.042%) were attributed to SUID. The number of SUID deaths at this altitude in the United States is very small (10 deaths in 6 years).

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#11

 

View it
Name
Description Neutrophilic Fe(II) oxidizing bacteria like Mariprofundus ferrooxydans are obligate chemolithoautotrophic bacteria that play an important role in the biogeochemical cycling of iron and other elements in multiple environments. These bacteria generally exhibit a singular metabolic mode of growth which prohibits comparative “omics” studies. Furthermore, these bacteria are considered non-amenable to classical genetic methods due to low cell densities, the inability to form colonies on solid medium, and production of copious amounts of insoluble iron oxyhydroxides as their metabolic byproduct. Consequently, the molecular and biochemical understanding of these bacteria remains speculative despite the availability of substantial genomic information. Here we develop the first genetic system in neutrophilic Fe(II) oxidizing bacterium and use it to engineer lithoheterotrophy in M. ferrooxydans, a metabolism that has been speculated but not experimentally validated. This synthetic biology approach could be extended to gain physiological understanding and domesticate other bacteria that grow using a single metabolic mode.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#12

 

View it
Name
Description Electrostatics of depolarization field Ed in relation to the polarization is studied. In particular, the value of permittivity for Ed (εd) in prototypical situations of ferroelectrics, including Mehta formula, is examined by ab initio calculations. By using spontaneous polarization PS corresponding to accurate experiment ones, we show εd = 1, which suggests that the results of εd ≫ 1 indicate hidden mechanisms; εd = 1 suggests that the effect of Ed is significant to induce intriguing important phenomena overlooked by εd ≫ 1. A bridge between εd = 1 and εd ≫ 1, i.e. the consistency of εd = 1 with conventional results is presented. The exact electrostatic equality of head-to-head–tail-to-tail domains to free-standing ferroelectrics is deduced. Hence, most stoichiometric clean freestanding monodomain ferroelectrics and head-to-head–tail-to-tail domains are shown unstable regardless of size, unless partially metallic. This verifies the previous results in a transparent manner. This conclusion is shown consistent with a recent hyperferroelectric LiBeSb and “freestanding” monolayer ferroelectrics, of which origin is suggested to be adsorbates. In addition, this restriction is suggested to break in externally strained ultrathin ferroelectrics. The macroscopic formulas of Ed are found valid down to a several unit-cells, when electronic and atomic-scale surface effects are unimportant and accurate PS is used.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#13

 

View it
Name
Description The latency of the auditory steady-state response (ASSR) may provide valuable information regarding the integrity of the auditory system, as it could potentially reveal the presence of multiple intracerebral sources. To estimate multiple latencies from high-order ASSRs, we propose a novel two-stage procedure that consists of a nonparametric estimation method, called apparent latency from phase coherence (ALPC), followed by a heuristic sequential forward selection algorithm (SFS). Compared with existing methods, ALPC-SFS requires few prior assumptions, and is straightforward to implement for higher-order nonlinear responses to multi-cosine sound complexes with their initial phases set to zero. It systematically evaluates the nonlinear components of the ASSRs by estimating multiple latencies, automatically identifies involved ASSR components, and reports a latency consistency index. To verify the proposed method, we performed simulations for several scenarios: two nonlinear subsystems with different or overlapping outputs. We compared the results from our method with predictions from existing, parametric methods. We also recorded the EEG from ten normal-hearing adults by bilaterally presenting superimposed tones with four frequencies that evoke a unique set of ASSRs. From these ASSRs, two major latencies were found to be stable across subjects on repeated measurement days. The two latencies are dominated by low-frequency (LF) (near 40 Hz, at around 41–52 ms) and high-frequency (HF) (> 80 Hz, at around 21–27 ms) ASSR components. The frontal-central brain region showed longer latencies on LF components, but shorter latencies on HF components, when compared with temporal-lobe regions. In conclusion, the proposed nonparametric ALPC-SFS method, applied to zero-phase, multi-cosine sound complexes is more suitable for evaluating embedded nonlinear systems underlying ASSRs than existing methods. It may therefore be a promising objective measure for hearing performance and auditory cortex (dys)function.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#14

 

View it
Name
Description While a detailed knowledge of the hierarchical structure and morphology of the extracellular matrix is considered crucial for understanding the physiological and mechanical properties of bone and cartilage, the orientation of collagen fibres and carbonated hydroxyapatite (HA) crystallites remains a debated topic. Conventional microscopy techniques for orientational imaging require destructive sample sectioning, which both precludes further studies of the intact sample and potentially changes the microstructure. In this work, we use X-ray diffraction tensor tomography to image non-destructively in 3D the HA orientation in a medial femoral condyle of a piglet. By exploiting the anisotropic HA diffraction signal, 3D maps showing systematic local variations of the HA crystallite orientation in the growing subchondral bone and in the adjacent mineralized growth cartilage are obtained. Orientation maps of HA crystallites over a large field of view (~ 3 × 3 × 3 mm3) close to the ossification (bone-growth) front are compared with high-resolution X-ray propagation phase-contrast computed tomography images. The HA crystallites are found to predominantly orient with their crystallite c-axis directed towards the ossification front. Distinct patterns of HA preferred orientation are found in the vicinity of cartilage canals protruding from the subchondral bone. The demonstrated ability of retrieving 3D orientation maps of bone-cartilage structures is expected to give a better understanding of the physiological properties of bones, including their propensity for bone-cartilage diseases.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#15

 

View it
Name
Description A novel species of the family Alepocephalidae (slickheads), Narcetes shonanmaruae, is described based on four specimens collected at depths greater than 2171 m in Suruga Bay, Japan. Compared to other alepocephalids, this species is colossal (reaching ca. 140 cm in total length and 25 kg in body weight) and possesses a unique combination of morphological characters comprising anal fin entirely behind the dorsal fin, multiserial teeth on jaws, more scale rows than congeners, precaudal vertebrae less than 30, seven branchiostegal rays, two epurals, and head smaller than those of relatives. Mitogenomic analyses also support the novelty of this large deep-sea slickhead. Although most slickheads are benthopelagic or mesopelagic feeders of gelatinous zooplankton, behavioural observations and dietary analyses indicate that the new species is piscivorous. In addition, a stable nitrogen isotope analysis of specific amino acids showed that N. shonanmaruae occupies one of the highest trophic positions reported from marine environments to date. Video footage recorded using a baited camera deployed at a depth of 2572 m in Suruga Bay revealed the active swimming behaviour of this slickhead. The scavenging ability and broad gape of N. shonanmaruae might be correlated with its colossal body size and relatively high trophic position.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#16

 

View it
Name
Description The Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#17

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#18

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#19

 

View it
Name
Description This study reports the development of a CRISPR –Cas9 therapeutic to target herpes simplex virus 1 and treat herpetic stromal keratitis in mice.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#20

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#21

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#22

 

View it
Name
Description An investigation of the molecular processes of mitochondrial reprogramming and metabolic stress in antigen-experienced T cells within tumor microenvironments reveals mechanisms responsible for T cell exhaustion and dysfunction and facilitates the development of new strategies for tumor immunotherapy.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#23

 

View it
Name
Description This study provides structural insights into how the rotavirus spike protein VP4 undergoes a conformational change to initiate host membrane disruption during infection.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#24

 

View it
Name
Description Agudo-Canalejo et al. now report in Nature that the process of wetting, whereby a liquid establishes a contact with a surface, underlies interactions of phase-separated droplets with autophagic membranes.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#25

 

View it
Name
Description Extreme-ultraviolet (XUV) sources including high-harmonic generation (HHG), free-electron lasers (FELs), soft-X-ray lasers and laser-driven plasmas are widely used for applications ranging from femtochemistry and attosecond science to coherent diffractive imaging and EUV (or XUV) lithography. The bandwidth of the XUV light emitted by these sources reflects the XUV generation process used. Whereas light from soft-X-ray lasers1 and seeded XUV FELs2 typically has a relatively narrow bandwidth, plasma sources and HHG sources often emit broadband XUV pulses3. Since these characteristic properties of a given source impose limitations on applications, techniques enabling modification of the bandwidth are highly desirable. Here we introduce a concept for efficient spectral compression by four-wave mixing (FWM), exploiting a phase-matching scheme based on closely-spaced resonances. We demonstrate the compression of broadband radiation in the 145–130 nm wavelength range into a narrow-bandwidth XUV pulse at 100.3 nm wavelength in the presence of a broadband near-infrared (NIR) pulse in a krypton gas jet. Our concept provides new possibilities for tailoring the spectral bandwidth of XUV beams. Through a dense krypton gas jet in the presence of a broadband near-infrared pulse, spectral compression of broadband XUV radiation between 145 and 130 nm wavelengths into a narrow-bandwidth XUV pulse at 100.3 nm wavelength by four-wave mixing is demonstrated.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 January 2021

#26

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 23 January 2021

#27

 

View it
Name
Description The characteristics of aortic valvular outflow jet affect aortopathy in the bicuspid aortic valve (BAV). This study aimed to elucidate the effects of BAV morphology on the aortic valvular outflow jets. Morphotype-specific valve-devising apparatuses were developed to create aortic valve models. A magnetic resonance imaging-compatible pulsatile flow circulation system was developed to quantify the outflow jet. The eccentricity and circulation values of the peak systolic jet were compared among tricuspid aortic valve (TAV), three asymmetric BAVs, and two symmetric BAVs. The results showed mean aortic flow and leakage did not differ among the five BAVs (six samples, each). Asymmetric BAVs demonstrated the eccentric outflow jets directed to the aortic wall facing the smaller leaflets. In the asymmetric BAV with the smaller leaflet facing the right-anterior, left-posterior, and left-anterior quadrants of the aorta, the outflow jets exclusively impinged on the outer curvature of the ascending aorta, proximal arch, and the supra-valvular aortic wall, respectively. Symmetric BAVs demonstrated mildly eccentric outflow jets that did not impinge on the aortic wall. The circulation values at peak systole increased in asymmetric BAVs. The bicuspid symmetry and the position of smaller leaflet were determinant factors of the characteristics of aortic valvular outflow jet.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#28

 

View it
Name
Description For a sustainable human presence on the Moon, it is critical to develop technologies that could utilise the locally available resources (a.k.a. in situ resource utilisation or ISRU) for habitat construction. As the surface soil is one of the most widely available resources at the Moon, we have investigated the viability of microwave heating of a lunar soil simulant (JSC-1A). JSC-1A was thermally treated in a bespoke microwave apparatus using 2.45 GHz frequency, using five different microwave powers in the range of 250 W to 1000 W. The structural properties of the resulting products were analysed to determine whether their microstructures and mechanical strengths differ under different input powers; and whether input power plays a crucial role in triggering thermal runaway, for identifying the optimum power for developing a microwave-heating. Our key findings are: (i) the higher input powers (800 W and 1000 W) generate the highest yields and microstructures with the greatest mechanical strengths, at the shortest fabrication times, and (ii) thermal runaway improves the microwave heating efficiency despite the rapid increase in temperature, once it is triggered. Our findings are of key importance for developing a microwave-heating payload for future lunar ISRU demonstration missions, contributing towards 3D printing-based extra-terrestrial construction processes.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#29

 

View it
Name
Description Many neurocognitive studies endeavor to understand neural mechanisms of basic creative activities in strictly controlled experiments. However, little evidence is available regarding the neural mechanisms of interactions between basic activities underlying creativity in such experiments. Moreover, strictly controlled experiments might limit flexibility/freedom needed for creative exploration. Thus, this study investigated the whole-brain neuronal networks’ interactions between three modes of thinking: idea generation, idea evolution, and evaluation in a loosely controlled creativity experiment. The loosely controlled creativity experiment will provide a degree of flexibility/freedom for participants to incubate creative ideas through extending response time from a few seconds to 3 min. In the experiment, participants accomplished a modified figural Torrance Test of Creative Thinking (TTCT-F) while their EEG signals were recorded. During idea generation, a participant was instructed to complete a sketch that was immediately triggered by a sketch stimulus at first sight. During idea evolution, a participant was instructed to complete a sketch that is radically distinctive from what was immediately triggered by the sketch stimulus. During the evaluation, a participant was instructed to evaluate difficulties of thinking and drawing during idea generation and evolution. It is expected that participants would use their experience to intuitively complete a sketch during idea generation while they could use more divergent and imaginative thinking to complete a possible creative sketch during idea evolution. Such an experimental design is named as a loosely controlled creativity experiment, which offers an approach to studying creativity in an ecologically valid manner. The validity of the loosely controlled creativity experiment could be verified through comparing its findings on phenomena that have been effectively studied by validated experimental research. It was found from our experiment that alpha power decreased significantly from rest to the three modes of thinking. These findings are consistent with that from visual creativity research based on event-related (de)synchronization (ERD/ERS) and task-related power changes (TRP). Specifically, in the lower alpha band (8–10 Hz), the decreases of alpha power were significantly lower over almost the entire scalp during idea evolution compared to the other modes of thinking. This finding indicated that idea evolution requires less general attention demands than the other two modes of thinking since the lower alpha ERD has been reported as being more likely to reflect general task demands such as attentional processes. In the upper alpha band (10–12 Hz), the decreases of alpha power were significantly higher over central sites during the evaluation compared to idea evolution. This finding indicated that evaluation involves more task-specific demands since the upper alpha ERD has been found as being more likely to reflect task-specific demands such as memory and intelligence, as was defined in the literature. In addition, new findings were obtained since the loosely controlled creativity experiment could activate multiple brain networks to accomplish the tasks involving the three modes of thinking. EEG microstate analysis was used to structure the unstructured EEG data to detect the activation of multiple brain networks. Combined EEG-fMRI and EEG source localization studies have indicated that EEG microstate classes are closely associated with the resting-state network as identified using fMRI. It was found that the default mode network was more active during idea evolution compared to the other two modes of thinking, while the cognitive control network was more active during the evaluation compared to the other two modes of thinking. This finding indicated that idea evolution might be more associated with unconscious and internal directed attention processes. Taken together, the loosely controlled creativity experiment with the support of EEG microstate analysis appears to offer an effective approach to investigating the real-world complex creativity activity.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#30

 

View it
Name
Description From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#31

 

View it
Name
Description The novel small molecule PTC596 inhibits microtubule polymerization and its clinical development has been initiated for some solid cancers. We herein investigated the preclinical efficacy of PTC596 alone and in combination with proteasome inhibitors in the treatment of multiple myeloma (MM). PTC596 inhibited the proliferation of MM cell lines as well as primary MM samples in vitro, and this was confirmed with MM cell lines in vivo. PTC596 synergized with bortezomib or carfilzomib to inhibit the growth of MM cells in vitro. The combination treatment of PTC596 with bortezomib exerted synergistic effects in a xenograft model of human MM cell lines in immunodeficient mice and exhibited acceptable tolerability. Mechanistically, treatment with PTC596 induced cell cycle arrest at G2/M phase followed by apoptotic cell death, associated with the inhibition of microtubule polymerization. RNA sequence analysis also revealed that PTC596 and the combination with bortezomib affected the cell cycle and apoptosis in MM cells. Importantly, endoplasmic reticulum stress induced by bortezomib was enhanced by PTC596, providing an underlying mechanism of action of the combination therapy. Our results indicate that PTC596 alone and in combination with proteasome inhibition are potential novel therapeutic options to improve outcomes in patients with MM.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#32

 

View it
Name
Description Crowding, the failure to identify a peripheral item in clutter, is an essential bottleneck in visual information processing. A hallmark characteristic of crowding is the inner–outer asymmetry in which the outer flanker (more eccentric) produces stronger interference than the inner one (closer to the fovea). We tested the contribution of the inner-outer asymmetry to the pattern of crowding errors in a typical radial crowding display in which both flankers are presented simultaneously on the horizontal meridian. In two experiments, observers were asked to estimate the orientation of a Gabor target. Instead of the target, observers reported the outer flanker much more frequently than the inner one. When the target was the outer Gabor, crowding was reduced. Furthermore, when there were four flankers, two on each side of the target, observers misreported the outer flanker adjacent to the target, not the outermost flanker. Model comparisons suggested that orientation crowding reflects sampling over a weighted sum of the represented features, in which the outer flanker is more heavily weighted compared to the inner one. Our findings reveal a counterintuitive phenomenon: in a radial arrangement of orientation crowding, within a region of selection, the outer item dominates appearance more than the inner one.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#33

 

View it
Name
Description Organoids derived from epithelial tumors have recently been utilized as a preclinical model in basic and translational studies. This model is considered to represent the original tumor in terms of 3D structure, genetic and cellular heterogeneity, but not tumor microenvironment. In this study, we established organoids and paired cancer-associated fibroblasts (CAFs) from surgical specimens of colorectal carcinomas (CRCs), and evaluated gene expression profiles in organoids with and without co-culture with CAFs to assess interactions between tumor cells and CAFs in tumor tissues. We found that the expression levels of several genes, which are highly expressed in original CRC tissues, were downregulated in organoids but re-expressed in organoids by co-culturing with CAFs. They comprised immune response- and external stimulus-related genes, e.g., REG family and dual oxidases (DUOXs), which are known to have malignant functions, leading tumor cells to proliferative and/or anti-apoptotic states and drug resistant phenotypes. In addition, the degree of differential induction of REG1 and DUOX2 in the co-culture system varied depending on CAFs from each CRC case. In conclusion, the co-culture system of CRC organoids with paired CAFs was able to partially reproduce the tumor microenvironment.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#34

 

View it
Name
Description An approximate solutions of the radial Schrödinger equation was obtained under a modified Tietz–Hua potential via supersymmetric approach. The effect of the modified parameter and optimization parameter respectively on energy eigenvalues were graphically and numerically examined. The comparison of the energy eigenvalues of modified Tietz–Hua potential and the actual Tietz–Hua potential were examined. The ro-vibrational energy of four molecules were also presented numerically. The thermal properties of the modified Tietz–Hua potential were calculated and the effect of temperature on each of the thermal property were examined under hydrogen fluoride, hydrogen molecule and carbon (ii) oxide. The study reveals that for a very small value of the modified parameter, the energy eigenvalues of the modified Tietz–Hua potential and that of the actual Tietz–Hua potential are equivalent. Finally, the vibrational energies for Cesium molecule was calculated and compared with the observed value. The calculated results were found to be in good agreement with the observed value.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#35

 

View it
Name
Description Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab’s yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#36

 

View it
Name
Description Maximal-rate rhythmic repetitive movements cannot be sustained for very long, even if unresisted. Peripheral and central mechanisms of fatigue, such as the slowing of muscle relaxation and an increase in M1-GABAb inhibition, act alongside the reduction of maximal execution rates. However, maximal muscle force appears unaffected, and it is unknown whether the increased excitability of M1 GABAergic interneurons is an adaptation to the waning of muscle contractility in these movements. Here, we observed increased M1 GABAb inhibition at the end of 30 s of a maximal-rate finger-tapping (FT) task that caused fatigue and muscle slowdown in a sample of 19 healthy participants. The former recovered a few seconds after FT ended, regardless of whether muscle ischaemia was used to keep the muscle slowed down. Therefore, the increased excitability of M1-GABAb circuits does not appear to be mediated by afferent feedback from the muscle. In the same subjects, continuous (inhibitory) and intermittent (excitatory) theta-burst stimulation (TBS) was used to modulate M1 excitability and to understand the underlying central mechanisms within the motor cortex. The effect produced by TBS on M1 excitability did not affect FT performance. We conclude that fatigue during brief, maximal-rate unresisted repetitive movements has supraspinal components, with origins upstream of the motor cortex.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#37

 

View it
Name
Description Microplastic and nanoplastic particles are prevalent in the environment and are beginning to enter the living system through multiple channels. Currently, little is known about the impact of plastic nanoparticles in living organisms. In order to investigate the health impact of micro- and nanoparticles of common polymers in a systematic way, luminescent plastic nanoparticles from two common polymers, polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) with relatively narrow size distribution are prepared using a nanoprecipitation method. As a model system, BHK-21 cells were exposed to polymer nanoparticles to understand the mode of uptake, internalization and biochemical changes inside the cells. The cellular effects of the nanoparticles were evaluated by monitoring the changes in cell viability, cell morphology, concentrations of reactive oxygen species (ROS), adenine triphosphate (ATP) and lactate dehydrogenase at different concentrations of the nanoparticles and time of exposure. PVC and PMMA nanoparticles induced a reduction in the cell viability along with a reduction of ATP and increase of ROS concentrations in a dose- and time-dependent manner. The plastic nanoparticles are internalized into the cell via endocytosis, as confirmed by Dynasore inhibition assay and colocalization with latex beads. Our findings suggest that plastic nanoparticle internalization could perturb cellular physiology and affect cell survival under laboratory conditions.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#38

 

View it
Name
Description Native to southern Africa, the blue antelope (Hippotragus leucophaeus) is the only large African mammal species known to have become extinct in historical times. However, it was poorly documented prior to its extinction ~ 1800 AD, and many of the small number of museum specimens attributed to it are taxonomically contentious. This places limitations on our understanding of its morphology, ecology, and the mechanisms responsible for its demise. We retrieved genetic information from ten of the sixteen putative blue antelope museum specimens using both shotgun sequencing and mitochondrial genome target capture in an attempt to resolve the uncertainty surrounding the identification of these specimens. We found that only four of the ten investigated specimens, and not a single skull, represent the blue antelope. This indicates that the true number of historical museum specimens of the blue antelope is even smaller than previously thought, and therefore hardly any reference material is available for morphometric, comparative and genetic studies. Our study highlights how genetics can be used to identify rare species in natural history collections where other methods may fail or when records are scarce. Additionally, we present an improved mitochondrial reference genome for the blue antelope as well as one complete and two partial mitochondrial genomes. A first analysis of these mitochondrial genomes indicates low levels of maternal genetic diversity in the ‘museum population’, possibly confirming previous results that blue antelope population size was already low at the time of the European colonization of South Africa.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#39

 

View it
Name
Description How the shape of embryos and organs emerges during development is a fundamental question that has fascinated scientists for centuries. Tissue dynamics arise from a small set of cell behaviours, including shape changes, cell contact remodelling, cell migration, cell division and cell extrusion. These behaviours require control over cell mechanics, namely active stresses associated with protrusive, contractile and adhesive forces, and hydrostatic pressure, as well as material properties of cells that dictate how cells respond to active stresses. In this Review, we address how cell mechanics and the associated cell behaviours are robustly organized in space and time during tissue morphogenesis. We first outline how not only gene expression and the resulting biochemical cues, but also mechanics and geometry act as sources of morphogenetic information to ultimately define the time and length scales of the cell behaviours driving morphogenesis. Next, we present two idealized modes of how this information flows — how it is read out and translated into a biological effect — during morphogenesis. The first, akin to a programme, follows deterministic rules and is hierarchical. The second follows the principles of self-organization, which rests on statistical rules characterizing the system’s composition and configuration, local interactions and feedback. We discuss the contribution of these two modes to the mechanisms of four very general classes of tissue deformation, namely tissue folding and invagination, tissue flow and extension, tissue hollowing and, finally, tissue branching. Overall, we suggest a conceptual framework for understanding morphogenetic information that encapsulates genetics and biochemistry as well as mechanics and geometry as information modules, and the interplay of deterministic and self-organized mechanisms of their deployment, thereby diverging considerably from the traditional notion that shape is fully encoded and determined by genes. Tissue morphogenesis is instructed by the interplay of biochemical cues, mechanics and tissue geometry. Conceptually, these instructions can be deployed either deterministically, functioning as a pre-patterned programme for shape changes, or stochastically, whereby the shape emerges in a self-organized fashion. This Review discusses recent insights into how pre-patterned and stochastic tissue shaping are integrated during development.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#40

 

View it
Name
Description An efficient [4 + 1] annulation between α-bromooximes and sulfur ylides via in situ generation of nitrosoalkenes under mild basic reaction conditions has been developed, providing an expeditious and scalable approach to synthesize biologically interesting isoxazoline derivatives with good to excellent yields.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#41

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#42

 

View it
Name
Description In the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g−1 compared to PP (100 mg g−1) and PPa (125 mg g−1). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#43

 

View it
Name
Description High-fidelity projective readout of a qubit’s state in a single experimental repetition is a prerequisite for various quantum protocols of sensing and computing. Achieving single-shot readout is challenging for solid-state qubits. For Nitrogen-Vacancy (NV) centers in diamond, it has been realized using nuclear memories or resonant excitation at cryogenic temperature. All of these existing approaches have stringent experimental demands. In particular, they require a high efficiency of photon collection, such as immersion optics or all-diamond micro-optics. For some of the most relevant applications, such as shallow implanted NV centers in a cryogenic environment, these tools are unavailable. Here we demonstrate an all-optical spin readout scheme that achieves single-shot fidelity even if photon collection is poor (delivering less than 103 clicks/second). The scheme is based on spin-dependent resonant excitation at cryogenic temperature combined with spin-to-charge conversion, mapping the fragile electron spin states to the stable charge states. We prove this technique to work on shallow implanted NV centers, as they are required for sensing and scalable NV-based quantum registers. The NV center in diamond has been used extensively in sensing; however single shot readout of its spin remains challenging, requiring complex optical setups. Here, Irber et al. demonstrate a more robust scheme that achieves single-shot readout even when using inefficient detection optics.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 January 2021

#44

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#45

 

View it
Name
Description The energy gap law (EG-law) and aggregation quenching are the main limitations to overcome in the design of near-infrared (NIR) organic emitters. Here, we achieve unprecedented results by synergistically addressing both of these limitations. First, we propose porphyrin oligomers with increasing length to attenuate the effects of the EG -law by suppressing the non-radiative rate growth, and to increase the radiative rate via enhancement of the oscillator strength. Second, we design side chains to suppress aggregation quenching. We find that the logarithmic rate of variation in the non-radiative rate vs. EG is suppressed by an order of magnitude with respect to previous studies, and we complement this breakthrough by demonstrating organic light-emitting diodes with an average external quantum efficiency of ~1.1%, which is very promising for a heavy-metal-free 850 nm emitter. We also present a novel quantitative model of the internal quantum efficiency for active layers supporting triplet-to-singlet conversion. These results provide a general strategy for designing high-luminance NIR emitters. Organic (carbon-based) light-emitting diodes (LEDs) that emit near-infrared light can be built by linking together large organic molecules called porphyrins, offering many potential industrial and medical applications. Organic near-infrared LEDs have several advantages over conventional LEDs based on inorganic semiconductors, including mechanical flexibility, biocompatibility and the absence of polluting heavy metals. Researchers in the UK and Italy led by Harry Anderson at the University of Oxford and Franco Cacialli at University College London explored the potential of linked porphyrin structures that fluoresce at near-infrared wavelengths. The optical properties of the materials are improved by engineering the molecular structure and a quantitative model is presented to explain the efficient emission. This research provides understanding of exciton dynamics and points towards innovative uses of near-infrared light in applications including light therapy, optical communications, biosensors and biometric systems.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#46

 

View it
Name
Description To investigate the relationships between LncRNA NNT-AS1, CRP, PCT and their interactions and the refractory mycoplasma pneumoniae pneumonia (RMPP) in children. Serum levels of LncRNA NNT-AS1 of RMPP and non-RMPP (NRMPP) patients were detected by real-time PCR, and were analyzed together with serum c-reactive protein (CRP) and procalcitonin (PCT). Correlations between LncRNA NNT-AS1 and CRP and PCT were analyzed by Pearson correlation test. The ROC curve was used to analyze the potential of LncRNA NNT-AS1, CRP and PCT as biomarkers for predicting RMPP. Logistic regression crossover model and the Excel compiled by Andersson et al. were used to analyze the interactions among the biomarkers. We found that LncRNA NNT-AS1, CRP and PCT were all highly expressed in patients with RMPP. LncRNA NNT-AS1 could positively correlate with the expressions of CRP and PCT, and jointly promote the occurrence of RMPP. The combined diagnosis of LncRNA NNT-AS1, CRP and PCT could predict the occurrence of RMPP.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#47

 

View it
Name
Description We used swept-source (SS) optical coherence tomography (OCT) and OCT angiography (OCTA) to investigate the effects of moderate physical exercise on retinal and choroidal vessel densities (VDs) and thicknesses in children. One eye in each of 40 myopic children (mean age, 11.70 years) and 18 emmetropic children (mean age, 11.06 years) were included. SS-OCT 6 × 6-mm radial scans and SS-OCTA 3 × 3-mm images were centered on the macula. Heart rate (HR), systolic and diastolic blood pressure, and intraocular pressure (IOP) were recorded before and immediately after a 20-min stationary cycling exercise and after a 30-min rest. The subfoveal choroidal thickness (SFCT), choroidal thickness (CT), and VD at the superficial and deep retinal layers, choriocapillaris, and deeper choroidal vessels were determined. SFCT and CT were significantly lower at all locations immediately after exercise (p < 0.001) and did not fully recover after rest (p < 0.05). VD was lower in the deep retinal layer after exercise (p = 0.02) and higher in the superficial layer after rest (p = 0.03) in myopic eyes while it was higher in the superficial (p < 0.01) and deep layer (p < 0.01) after rest in emmetropic eyes. No significant exercise-related changes in the superficial retinal VD, choroidal VD, or IOP were observed. ΔCT% and ΔSFCT% were significantly correlated with increases in HR in myopic group (p = 0.04 and p = 0.03, respectively). Exercise increased retinal VD after rest in emmetropic eyes, and caused significant CT thinning that lasted for at least 30 min in both emmetropic and myopic eyes.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#48

 

View it
Name
Description Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a complicated maternally inherited disorder lacking of sensitive and specific biomarkers. The objective of this study was to investigate the serum neurofilament light chain (NfL) as a novel biomarker of neurological dysfunction in MELAS. Patients with different status of MELAS were enrolled in this study. The Mini-Mental State Examination (MMSE) was given to the participants to evaluate cognition status. Multiple functional MRI was performed on the participants. Blood samples were collected and the serum NfL concentrations were determined by the single-molecule array technology (Simoa). This study enrolled 23 patients with MELAS, 15 people in the acute attack phase of MELAS and 10 people in the remission phase, including 2 patients in both acute attack and remission phase. Sixteen healthy controls (HCs) were also enrolled. Serum NfL level increased significantly in patients with MELAS. Serum NfL level in the acute attack group (146.73 [120.91–411.31] pg/ml, median [IQR]) was higher than in the remission group (40.31 [19.54–151.05] pg/ml, median [IQR]) and HCs group (7.70 [6.13–9.78] pg/ml, median [IQR]) (p < 0.05). The level of NfL in the remission phase group was higher than in HCs group (p < 0.05). A negative correlation was found between the serum NfL level and MMSE (p = 0.006, r = -0.650). The NfL concentration correlated positively with stroke-like lesion volume in the brain (r = 0.740, p < 0.001). Serum NfL may serve as a novel biomarker for the neurological dysfunction in MELAS patients.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#49

 

View it
Name
Description We hypothesized that deep neuromuscular blockade (NMB) with low-pressure pneumoperitoneum (PP) would improve respiratory mechanics and reduce biotrauma compared to moderate NMB with high-pressure PP in a steep Trendelenburg position. Seventy-four women undergoing robotic gynecologic surgery were randomly assigned to two equal groups. Moderate NMB group was maintained with a train of four count of 1–2 and PP at 12 mmHg. Deep NMB group was maintained with a post-tetanic count of 1–2 and PP at 8 mmHg. Inflammatory cytokines were measured at baseline, at the end of PP, and 24 h after surgery. Interleukin-6 increased significantly from baseline at the end of PP and 24 h after the surgery in moderate NMB group but not in deep NMB group (Pgroup*time = 0.036). The peak inspiratory, driving, and mean airway pressures were significantly higher in moderate NMB group than in deep NMB group at 15 min and 60 min after PP (Pgroup*time = 0.002, 0.003, and 0.048, respectively). In conclusion, deep NMB with low-pressure PP significantly suppressed the increase in interleukin-6 developed after PP, by significantly improving the respiratory mechanics compared to moderate NMB with high-pressure PP during robotic surgery.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#50

 

View it
Name
Description The failure rate of TAA is still higher than that of other joint replacement procedures. This study aimed to calculate the early failure rate and identify associated patient factors. Data from the Korean Health Insurance Review and Assessment Service database from 2009 to 2017 were collected. We evaluated patients who had TAA as a primary surgical procedure. Early failure was defined as conversion to revision TAA or arthrodesis after primary TAA within five years. Patients with early failure after primary TAA were designated as the “Failure group”. Patients without early failure and who were followed up unremarkably for at least five years after primary TAA were designated as the “No failure group”. Overall, 2157 TAA participants were included. During the study period, 197 patients developed failure within five years postoperatively, for an overall failure rate of 9.1%. Significant risk factors for early failure were history of chronic pulmonary disease, diabetes, peripheral vascular disease, hyperlipidemia, dementia, and alcohol abuse. A significant increase of odds ratio was found in patients with a history of dementia, chronic pulmonary disease, and diabetes. Surgical indications and preoperative patient counseling should consider these factors.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#51

 

View it
Name
Description The development of alternative isothermal amplification assays including multiple cross displacement amplification (MCDA) may address speed and portability limitations of real-time PCR (rt-PCR) methods for SARS-CoV-2 detection. We developed a novel SARS-CoV-2 MCDA assay and compared its speed and sensitivity to loop-mediated isothermal amplification (LAMP) and rt-PCR. Two MCDA assays targeting SARS-CoV-2 N gene and ORF1ab were designed. The fastest time to detection and sensitivity of MCDA was compared to LAMP and rt-PCR using DNA standards and transcribed RNA. For the N gene, MCDA was faster than LAMP and rt-PCR by 10 and 20 min, respectively with fastest time to detection at 5.2 min. rt-PCR had the highest sensitivity with the limit of detection at 10 copies/µl compared with MCDA (100 copies/µl) and LAMP (500 copies/µl). For ORF1ab, MCDA and LAMP had similar speed with fastest time to detection at 9.7 and 8.4 min, respectively. LAMP was more sensitive for ORF1ab detection with 50 copies/µl compared to MCDA (500 copies/µl). In conclusion, different nucleic acid amplification methods provide different advantages. MCDA is the fastest nucleic acid amplification method for SARS-CoV-2 while rt-PCR is the most sensitive. These advantages should be considered when determining the most suitable nucleic acid amplification methods for different applications.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#52

 

View it
Name
Description Determine the impact of the mTOR inhibitor, rapamycin, on the hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and the production of reactive oxygen species (ROS) in retinal cells. Rats made hyperglycemic for 8 weeks by streptozotocin, as well as control rats, received i.p. rapamycin (1 mg/kg) for 3 days prior to immunostaining of their retinas with anti-VEGF and anti-glial fibrillary acidic protein (GFAP) and measuring retinal protein levels of VEGF and GFAP by Western blotting. In other experiments, flow cytometry analysis of ethidium fluorescence determined intracellular ROS levels in the absence or presence of rapamycin (1 μM) under normoglycemic (5.5 mM) and hyperglycemic (25 mM) conditions in a rat retinal Müller cell line (TR-MUL5) and primary human retinal microvascular endothelial cells (HRMECs). In the diabetic retina, VEGF was elevated and colocalized with the glial marker, GFAP, whose level was also elevated. Treatment with rapamycin inhibited the diabetes-induced VEGF and GFAP increases. We also found that raising extracellular glucose from 5.5 mM to 25 mM resulted in significant rapamycin-sensitive increases in the ROS levels of TR-MUL5 cells and HRMECs. In rat retina, rapamycin attenuates the diabetes-induced VEGF overexpression, and in cultured Müller cells and HRMECs, inhibits the hyperglycemia-induced boost ROS.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#53

 

View it
Name
Description This work presents the modeling and simulation of CO2 capture by a water-based Titanium dioxide (TiO2) solid nanoparticle in a stirred high-pressure vessel at a constant temperature. Photocatalytic material such as TiO2 has excellent properties, namely it is nontoxic, inexpensive, and non-polluting. CFD model equations are developed and solved using COMSOL software package. The effect of the concentration of a solid nanoparticle in a water-based TiO2 solution, the size of TiO2 nanoparticles and the rate of mixing on the CO2 absorption rate is investigated. A 2D mathematical model considers both shuttle and micro-convention mechanisms. Results reveal that the best TiO2 concentration range is between 0.5 and 1 kg/m3 and that a particle size of 10 nm is more efficient than higher particle sizes. A moderate mixing rate maximizes the CO2 removal rate. The theoretical predictions are validated using lab experimental data and those in the available literature. Results confirm that the model calculations match with the experimental results. Accordingly, the model successfully predicts the experimental data and can be used for further studies.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#54

 

View it
Name
Description The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#55

 

View it
Name
Description The strong facet-dependent performance of glass-supported CeO2 thin films in different applications (catalysis, smart windows, etc.) has been the target of diverse fundamental and technological approaches. However, the design of accurate, cost-effective and scalable methods with the potential for large-area coverage that produce highly textured glass-supported CeO2 thin films remains a technological challenge. In the present work, it is demonstrated that under proper tuning conditions, the ultrasonic spray pyrolysis technique enables one to obtain glass-supported polycrystalline CeO2 films with noticeable texture along both the (100) and (111) directions, as well as with randomly oriented crystallites (no texture). The influence of flow rates, solution molarity, and substrate temperature on the texture and morphological characteristics, as well as optical absorption and Raman response of the deposited films, is evaluated. The obtained results are discussed on the basis of the combined dependence of the CeO2-exposed surfaces on the thermodynamic stability of the corresponding facets and the reaction kinetics, which modulate the crystallite growth direction.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#56

 

View it
Name
Description The design of sacrificial cathodic protection (CP) systems conventionally involves steady-state assumptions, which means design parameters are considered constant during the in-service life of CP systems. In contrast, it is evident by experimental observations (including field measurements) that cathodic protection is a transient process due to variations in electrolyte properties such as seasonal changes in electrical conductivity of soil, depletion of anodes, and formation of corrosion deposits on anode material surface, to name a few. The lack of practical time-dependent models on this critical issue is apparent in the literature; accordingly, in this study, a pseudo transient electrochemical model is adopted to highlight the transient behavior of cathodic protection systems and investigate key differences with steady-state behavior. For the sake of demonstration, the developed model is used to simulate the time-dependent performance of a sacrificial anode bed for cathodic protection of screw-pile foundations. The methodology proposed in this study can be used by corrosion engineers to improve and optimize the design of CP systems and numerically estimate the performance of sacrificial anodes and the level of protection over time.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#57

 

View it
Name
Description SiO2-SO3H, with a surface area of 115 m2/g, pore volumes of 0.38 cm3g−1 and 1.32 mmol H+/g, was used as a 10% w/w catalyst for the preparation of 5-hydroxymethyl-2-furfural (HMF) from fructose. A conversion of 100% was achieved in a microwave reactor during 10 min at 150 °C in DMSO, with 100% selectivity for HMF, at a molar ratio of fructose: DMSO equal to 1:56. The catalyst could be re-used three times.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#58

 

View it
Name
Description To contain the COVID-19 pandemic, many countries around the world rushed to develop digital contact tracing apps. However, the low rates of app installation have undermined the efficacy of such tools. A study by Munzert et al. shines light on potential barriers to adoption, as well as levers that could be used to increase uptake.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#59

 

View it
Name
Description The rumen microbiota comprises a community of microorganisms which specialise in the degradation of complex carbohydrates from plant-based feed. These microbes play a highly important role in ruminant nutrition and could also act as sources of industrially useful enzymes. In this study, we performed a metagenomic analysis of samples taken from the ruminal contents of cow (Bos Taurus), sheep (Ovis aries), reindeer (Rangifer tarandus) and red deer (Cervus elaphus). We constructed 391 metagenome-assembled genomes originating from 16 microbial phyla. We compared our genomes to other publically available microbial genomes and found that they contained 279 novel species. We also found significant differences between the microbiota of different ruminant species in terms of the abundance of microbial taxonomies, carbohydrate-active enzyme genes and KEGG orthologs. We present a dataset of rumen-derived genomes which in combination with other publicly-available rumen genomes can be used as a reference dataset in future metagenomic studies.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#60

 

View it
Name
Description Globally, neonicotinoids are the most used insecticides, despite their well-documented sub-lethal effects on beneficial insects. Neonicotinoids are nicotinic acetylcholine receptor agonists. Memory, circadian rhythmicity and sleep are essential for efficient foraging and pollination and require nicotinic acetylcholine receptor signalling. The effect of field-relevant concentrations of the European Union-banned neonicotinoids: imidacloprid, clothianidin, thiamethoxam and thiacloprid were tested on Drosophila memory, circadian rhythms and sleep. Field-relevant concentrations of imidacloprid, clothianidin and thiamethoxam disrupted learning, behavioural rhythmicity and sleep whilst thiacloprid exposure only affected sleep. Exposure to imidacloprid and clothianidin prevented the day/night remodelling and accumulation of pigment dispersing factor (PDF) neuropeptide in the dorsal terminals of clock neurons. Knockdown of the neonicotinoid susceptible Dα1 and Dβ2 nicotinic acetylcholine receptor subunits in the mushroom bodies or clock neurons recapitulated the neonicotinoid like deficits in memory or sleep/circadian behaviour respectively. Disruption of learning, circadian rhythmicity and sleep are likely to have far-reaching detrimental effects on beneficial insects in the field.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#61

 

View it
Name
Description FAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#62

 

View it
Name
Description The intrinsic mobile interfaces in ferroelectrics—the domain walls can drive and enhance diverse ferroelectric properties, essential for modern applications. Control over the motion of domain walls is of high practical importance. Here we analyse theoretically and show experimentally epitaxial ferroelectric films, where mobile domain walls coexist and interact with immobile growth-induced interfaces—columnar boundaries. Whereas these boundaries do not disturb the long-range crystal order, they affect the behaviour of domain walls in a peculiar selective manner. The columnar boundaries substantially modify the behaviour of non-ferroelastic domains walls, but have negligible impact on the ferroelastic ones. The results suggest that introduction of immobile boundaries into ferroelectric films is a viable method to modify domain structures and dynamic responses at nano-scale that may serve to functionalization of a broader range of ferroelectric films where columnar boundaries naturally appear as a result of the 3D growth.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#63

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#64

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#65

 

View it
Name
Description Membrane dynamics, such as those associated with intracellular traffic, require controlled deformation of the membrane. There is now evidence that the regulation of the luminal fluid composition — via solute fluxes — prominently impacts dynamic properties of endomembranes by modulating their tension. This has important consequences for the function of the endo-lysosomal system. Spencer Freeman draws attention to the role of ion fluxes and vesicular solute composition in regulating dynamics of endomembranes.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#66

 

View it
Name
Description On the threshold of the New Year we think back to the past 12 months and provide a few highlights.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#67

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#68

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#69

 

View it
Name
Description Atomically dispersed and nitrogen-coordinated single iron site catalysts hold great promise to replace platinum for proton-exchange membrane fuel cells, but they suffer from significant performance loss. Now, solving the conundrum to distinguish durable and non-durable FeN4 active sites can guide high-performance catalyst design.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#70

 

View it
Name
Description The magnetic properties of intercalated metal dichalcogenides are dramatically affected by small crystal imperfections, potentially providing design principles and materials for spintronic devices.

#Theoretical sciences
Field # Theoretical sciences
Updated 21 January 2021

#71

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#72

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#73

 

View it
Name
Description Contrary to spontaneous yawning—an ancient phenomenon common to vertebrates—contagious yawning (elicited by others’ yawns) has been found only in highly social species and may reflect an emotional inter-individual connection. We investigated yawn contagion in the domestic pig, Sus scrofa. Owing to the complex socio-emotional and cognitive abilities of Sus scrofa, we posited that yawn contagion could be present in this species (Prediction 1) and influenced by individual/social factors (Prediction 2). In June-November 2018, on 104 semi-free ranging adolescent/adult pigs, 224 videos were recorded for video analysis on yawning. Kinship information was refined via genetic analyses. Statistical elaboration was conducted via GLMMs and non-parametric/randomization/cross-tabulation tests. We found yawn contagion in Sus scrofa, as it was more likely that pigs yawned when perceiving rather than not perceiving (yawning/control condition) others’ yawns (response peak in the first out of three minutes). Yawn contagion was more likely: (1) in response to males’ yawns; (2) as the age increased; (3) within short distance (1 m); (4) between full siblings, with no significant association between kinship and distance. The influence of kinship suggests that—as also hypothesized for Homo sapiens—yawn contagion might be linked with emotional communication and possibly contagion.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#74

 

View it
Name
Description Alex Holehouse describes the contributions of Nott et al. to the understanding of the mechanisms of liquid–liquid phase separation.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#75

 

View it
Name
Description This study reports the structure of the RhopH complex of Plasmodium falciparum and its assembly and trafficking.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#76

 

View it
Name
Description This study shows that a large proportion of bacterial species in soil communities possess the enzymes to use inorganic energy sources such as trace gases.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#77

 

View it
Name
Description This study found that deficiency of the spore surface monosaccharide anthrose increases the virulence of Bacillus anthracis.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#78

 

View it
Name
Description Stress-induced glucocorticoids disturb mitochondrial bioenergetics and dynamics; however, instead of being removed via mitophagy, the damaged mitochondria accumulate. Therefore, we investigate the role of glucocorticoids in mitophagy inhibition and subsequent synaptic defects in hippocampal neurons, SH-SY5Y cells, and ICR mice. First, we observe that glucocorticoids decrease both synaptic density and vesicle recycling due to suppressed mitophagy. Screening data reveal that glucocorticoids downregulate BNIP3-like (BNIP3L)/NIX, resulting in the reduced mitochondrial respiration function and synaptic density. Notably, we find that glucocorticoids direct the glucocorticoid receptor to bind directly to the PGC1α promoter, downregulating its expression and nuclear translocation. PGC1α downregulation selectively decreases NIX-dependent mitophagy. Consistent with these results, NIX enhancer pre-treatment of a corticosterone-exposed mouse elevates mitophagy and synaptic density in hippocampus, improving the outcome of a spatial memory task. In conclusion, glucocorticoids inhibit mitophagy via downregulating NIX and that NIX activation represents a potential target for restoring synapse function. Stress-induced glucocorticoids cause mitochondrial damage in neurons, but they are not cleared by mitophagy. Here, the authors show that glucocorticoids inhibit NIX-dependent basal mitophagy, contributing to neurodegeneration in a mouse model that can be reversed by pretreatment with a NIX enhancer.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#79

 

View it
Name
Description Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices. The commercialisation of organic photovoltaic technology calls for research on material degradation mechanisms. Ramirez et al. show that triplet excitons produced by back charge transfer can significantly impact the photo-stability of fullerene-based devices even in the absence of water and oxygen.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#80

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#81

 

View it
Name
Description TBD

#Theoretical sciences;#Materials
Field # Theoretical sciences
Updated 20 January 2021

#82

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#83

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#84

 

View it
Name
Description Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, different types of processed CF products are commonly found in the market. Quality evaluation of them mainly relies on chemical content determination, which is time and money consuming. To rapidly and nondestructively discriminate different types of processed CF products, an electronic nose coupled with chemometrics was developed. The odour detection method of CF was first established by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital and mode standard were established, realizing the odour quality control of samples. Meanwhile, mathematical prediction models including the discriminant formula and back-propagation neural network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest that the developed electronic nose system could be an alternative way for evaluating the odour of different types of processed CF products.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#85

 

View it
Name
Description In dynamic environments, subjects often integrate multiple samples of a signal and combine them to reach a categorical judgment1. The process of deliberation can be described by a time-varying decision variable (DV), decoded from neural population activity, that predicts a subject’s upcoming decision2. Within single trials, however, there are large moment-to-moment fluctuations in the DV, the behavioural significance of which is unclear. Here, using real-time, neural feedback control of stimulus duration, we show that within-trial DV fluctuations, decoded from motor cortex, are tightly linked to decision state in macaques, predicting behavioural choices substantially better than the condition-averaged DV or the visual stimulus alone. Furthermore, robust changes in DV sign have the statistical regularities expected from behavioural studies of changes of mind3. Probing the decision process on single trials with weak stimulus pulses, we find evidence for time-varying absorbing decision bounds, enabling us to distinguish between specific models of decision making. In macaque motor cortex, moment-to-moment fluctuations in neurally derived decision variables are tightly linked to decision state and predict behavioural choices with better accuracy than condition-averaged decision variables or the visual stimulus alone, and can be used to distinguish between different models of decision making.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#86

 

View it
Name
Description Topological crystalline insulators (TCIs) can exhibit unusual, quantized electric phenomena such as fractional electric polarization and boundary-localized fractional charge1–6. This quantized fractional charge is the generic observable for identification of TCIs that lack clear spectral features5–7, including ones with higher-order topology8–11. It has been predicted that fractional charges can also manifest where crystallographic defects disrupt the lattice structure of TCIs, potentially providing a bulk probe of crystalline topology10,12–14. However, this capability has not yet been confirmed in experiments, given that measurements of charge distributions in TCIs have not been accessible until recently11. Here we experimentally demonstrate that disclination defects can robustly trap fractional charges in TCI metamaterials, and show that this trapped charge can indicate non-trivial, higher-order crystalline topology even in the absence of any spectral signatures. Furthermore, we uncover a connection between the trapped charge and the existence of topological bound states localized at these defects. We test the robustness of these topological features when the protective crystalline symmetry is broken, and find that a single robust bound state can be localized at each disclination alongside the fractional charge. Our results conclusively show that disclination defects in TCIs can strongly trap fractional charges as well as topological bound states, and demonstrate the primacy of fractional charge as a probe of crystalline topology. It is experimentally shown that crystallographic defects may trap fractional charges, as well as topological states, in the bulk of topological crystalline insulators.

#Theoretical sciences
Field # Theoretical sciences
Updated 20 January 2021

#87

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#88

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#89

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#90

 

View it
Name
Description Pannexin 3 (Panx3), a member of the gap junction pannexin family is required for the development of hard tissues including bone, cartilage and teeth. However, the role of Panx3 in skin development remains unclear. Here, we demonstrate that Panx3 regulates skin development by modulating the transcription factor, Epiprofin (Epfn). Panx3−/− mice have impaired skin development and delayed hair follicle regeneration. Loss of Panx3 in knockout mice and suppression by shRNA both elicited a reduction of Epfn expression in the epidermis. In cell culture, Panx3 overexpression promoted HaCaT cell differentiation, cell cycle exit and enhanced Epfn expression. Epfn−/− mice and inhibition of Epfn by siRNA showed no obvious differences of Panx3 expression. Furthermore, Panx3 promotes Akt/NFAT signaling pathway in keratinocyte differentiation by both Panx3 ATP releasing channel and ER Ca2+ channel functions. Our results reveal that Panx3 has a key role factor for the skin development by regulating Epfn.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#91

 

View it
Name
Description In this research article, a multiband circular polarization selective (CPS) metasurface is presented. A reciprocal bi-layered metasurface is designed by introducing the chirality in the structure. The top layer of the proposed metasurface is composed of circular split-ring resonator with a cross shape structure inside it. The same structure is printed on the bottom side of the proposed metasurface by rotating it at an angle of 90° to achieve chirality in the structure. The proposed metasurface is able to add CPS surface capability between 5.18 and 5.23 GHz for y-polarized incident wave. For the frequency band of 5.18–5.23 GHz, the transmission goes up to − 4 dB, while the polarization extinction ratio (PER) reaches up to − 27.4 dB at 5.2 GHz. Similarly, for x-polarized incident wave, three strategic CPS operating bands are achieved within the frequency ranges of 10.64–10.82 GHz, 12.25–12.47 GHz, and 14.42–14.67 GHz. The maximum PER of 47.16 dB has been achieved for the 14.42–14.67 GHz frequency band at 14.53 GHz. Furthermore, the response of the metasurface does not vary against oblique incidences up to 45°. The simple structure, angular stability, multiband and miniaturized size make this metasurface an outstanding applicant for polarization conversion and biomedical applications.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#92

 

View it
Name
Description We propose a scheme for the circulator function in a superconducting circuit consisting of a three-Josephson junction loop and a trijunction. In this study we obtain the exact Lagrangian of the system by deriving the effective potential from the fundamental boundary conditions. We subsequently show that we can selectively choose the direction of current flowing through the branches connected at the trijunction, which performs a circulator function. Further, we use this circulator function for a non-Abelian braiding of Majorana zero modes (MZMs). In the branches of the system we introduce pairs of MZMs which interact with each other through the phases of trijunction. The circulator function determines the phases of the trijunction and thus the coupling between the MZMs to gives rise to the braiding operation. We modify the system so that MZMs might be coupled to the external ones to perform qubit operations in a scalable design.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#93

 

View it
Name
Description Hyperkalemia is frequently observed in patients at the end-stage of chronic kidney disease (CKD), and has possible harmful consequences on cardiac function. Many strategies are currently used to manage hyperkalemia, one consisting of increasing fecal K+ excretion through the administration of cation-exchange resins. In this study, we explored another more specific method of increasing intestinal K+ secretion by inhibiting the H,K-ATPase type 2 (HKA2), which is the main colonic K+ reabsorptive pathway. We hypothetised that the absence of this pump could impede the increase of plasma K+ levels following nephronic reduction (N5/6) by favoring fecal K+ secretion. In N5/6 WT and HKA2KO mice under normal K+ intake, the plasma K+ level remained within the normal range, however, a load of K+ induced strong hyperkalemia in N5/6 WT mice (9.1 ± 0.5 mM), which was significantly less pronounced in N5/6 HKA2KO mice (7.9 ± 0.4 mM, p < 0.01). This was correlated to a higher capacity of HKA2KO mice to excrete K+ in their feces. The absence of HKA2 also increased fecal Na+ excretion by inhibiting its colonic ENaC-dependent absorption. We also showed that angiotensin-converting-enzyme inhibitor like enalapril, used to treat hypertension during CKD, induced a less severe hyperkalemia in N5/6 HKA2KO than in N5/6 WT mice. This study therefore provides the proof of concept that the targeted inhibition of HKA2 could be a specific therapeutic maneuver to reduce plasma K+ levels in CKD patients.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#94

 

View it
Name
Description Black auroras are small-scale features embedded in the diffuse background aurora, typically occurring post-substorm after magnetic midnight and with an eastward drift imposed. Black auroras show a significant reduction in optical brightness compared to the surrounding diffuse aurora, and can appear as slow-moving arcs or rapidly-moving patches and arc segments. We report, for the first time, an even more elusive small-scale optical structure that has always been observed occurring paired with $$sim$$ 10% of black aurora patches. A patch or arc segment of enhanced luminosity, distinctly brighter than the diffuse background, which we name the anti-black aurora, may appear adjacent to the black aurora. The anti-black aurora is of similar shape and size, and always moves in parallel to the drifting black aurora, although it may suddenly switch sides for no apparent reason. The paired phenomenon always drifts with the same average speed in an easterly direction. From the first dual-wavelength (427.8 nm and 844.6 nm) optical observations of the phenomenon recorded on 12 March 2016 outside Tromsø Norway, we show that the anti-black and black auroras have a higher and lower mean energy, respectively, of the precipitating electrons compared to the diffuse background.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#95

 

View it
Name
Description The threshold size for enlarged abdominal lymph nodes (E-ALNs), a common pediatric disorder, has yet to be standardized. According to the maximum short-axis diameter, this study divided ALNs into Grade A (≥ 10 mm), Grade B (8–10 mm), Grade C (5–8 mm), and Grade D (< 5 mm, normal). To identify the threshold size for E-ALNs, the prevalence of each grade was compared between asymptomatic individuals and symptomatic (e.g., abdominal pain) individuals without other diseases (e.g., appendicitis) that could explain the symptoms for different ages using data from > 200,000 individuals. The results showed the following: (1) For ages 1–3 years, the recommended threshold size is 8 mm, as the differences in the prevalence between the two groups were nonsignificant for Grade C but significant (p < 0.05) for both Grades A and B. (2) For ages 3–14 years, the recommended threshold size is 5 mm, as the differences between the two groups were significant (p < 0.05) for Grades A, B, and C. (3) The prevalence of Grades A, B, and C was very low for ages 0–1 years and high for ages 1–6 years. (4) The prevalence for males was generally higher than that for females for Grades A and B.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#96

 

View it
Name
Description Analysis of the adsorptive behaviour of kaolinite to sodium dodecyl benzene sulphonate (SDBS) at different concentrations can provides a basis for selecting the best concentration. The adsorptive capacity and adsorptive behaviour of kaolinite to SDBS at different concentrations were studied using ultraviolet spectrophotometer, pseudo-first-order adsorption kinetics model, and pseudo-second-order adsorption kinetics model. Scanning electron microscopy with energy dispersive spectrometry (SEM–EDS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR) were used to study the variation characteristics of surface structure, crystallinity indices, and main functional groups on kaolinite before, and after, adsorption. The results show that as the SDBS concentration increase, the adsorptive capacity of kaolinite to SDBS increase. The adsorption process can be accurately fitted by the pseudo-secondary adsorption kinetic model, which means the adsorptive behaviour was mainly chemical in origin. The adsorption of SDBS by kaolinite mainly occurs on the surface. The solidification, lamellar aggregation, and crystallinity index of kaolinite are more obvious after the adsorption of SDBS, but the interlayer spacing of kaolinite did not change to any significant. After the adsorption of SDBS, the intensity ratio of 1000–1008 cm−1 bands changed significantly, indicating the change of the chemical environment, and the adsorptive behaviour was chemical.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#97

 

View it
Name
Description Closed reduction and internal fixation with antegrade intramedullary nails is a feasible and effective treatment for displaced fifth metacarpal neck fractures (FMNFs). The present study aimed to compare clinical and radiological outcomes in patients with displaced FMNFs after treatment with single or dual antegrade elastic intramedullary nails (AEIMNs). Thirty-three patients were treated with a single 2.0 mm AEIMN and 34 patients were treated with two 1.5 mm AEIMNs. Clinical and radiological outcomes included grip strength, active range of motion (ROM), active flexion and extension of the fifth metacarpophalangeal (MCP) joint, dorsal angulation loss, and metacarpal shortening of the fifth metacarpal at 12 months after treatment. No significant difference was observed between the two groups with respect to grip strength, ROM or flexion of the fifth MCP joint. The average values of dorsal angulation loss, metacarpal shortening, and extension of the fifth MCP joint of the dual nails group were better than those of the single nail group (dorsal angulation loss, 2.79 ± 1.93° vs. 4.05 ± 1.59°, P = 0.009; metacarpal shortening, 1.66 ± 0.80 mm vs. 2.12 ± 0.88 mm, P = 0.028; extension of the fifth MCP joint, 7.71 ± 4.43° vs. 4.82 ± 4.09°, P = 0.012). In conclusion, dual AEIMNs fixation provided better MCP extension and radiological outcomes than single AEIMN fixation.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#98

 

View it
Name
Description Transcranial direct current stimulation (tDCS)-based interventions for augmenting motor learning are gaining interest in systems neuroscience and clinical research. Current approaches focus largely on monofocal motorcortical stimulation. Innovative stimulation protocols, accounting for motor learning related brain network interactions also, may further enhance effect sizes. Here, we tested different stimulation approaches targeting the cerebro-cerebellar loop. Forty young, healthy participants trained a fine motor skill with concurrent tDCS in four sessions over two days, testing the following conditions: (1) monofocal motorcortical, (2) sham, (3) monofocal cerebellar, or (4) sequential multifocal motorcortico-cerebellar stimulation in a double-blind, parallel design. Skill retention was assessed after circa 10 and 20 days. Furthermore, potential underlying mechanisms were studied, applying paired-pulse transcranial magnetic stimulation and multimodal magnetic resonance imaging-based techniques. Multisession motorcortical stimulation facilitated skill acquisition, when compared with sham. The data failed to reveal beneficial effects of monofocal cerebellar or additive effects of sequential multifocal motorcortico-cerebellar stimulation. Multimodal multiple linear regression modelling identified baseline task performance and structural integrity of the bilateral superior cerebellar peduncle as the most influential predictors for training success. Multisession application of motorcortical tDCS in several daily sessions may further boost motor training efficiency. This has potential implications for future rehabilitation trials.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#99

 

View it
Name
Description Calcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021

#100

 

View it
Name
Description Structural neuroimaging studies of posttraumatic stress disorder (PTSD) have typically reported reduced cortical thickness (CT) and gray matter volume (GMV) in subcortical structures and networks involved in memory retrieval, emotional processing and regulation, and fear acquisition and extinction. Although PTSD is more common in women, and interpersonal violence (IPV) exposure is a more potent risk factor for developing PTSD relative to other forms of trauma, most of the existing literature examined combat-exposed men with PTSD. Vertex-wise CT and subcortical GMV analyses were conducted to examine potential differences in a large, well-characterized sample of women with PTSD stemming from IPV-exposure (n = 99) compared to healthy trauma-free women without a diagnosis of PTSD (n = 22). Subgroup analyses were also conducted to determine whether symptom severity within specific PTSD symptom clusters (e.g., re-experiencing, active avoidance, hyperarousal) predict CT and GMV after controlling for comorbid depression and anxiety. Results indicated that a diagnosis of PTSD in women with IPV-exposure did not significantly predict differences in CT across the cortex or GMV in the amygdala or hippocampus compared to healthy controls. However, within the PTSD group, greater re-experiencing symptom severity was associated with decreased CT in the left inferior and middle temporal gyrus, and decreased CT in the right parahippocampal and medial temporal gyrus. In contrast, greater active avoidance symptom severity was associated with greater CT in the left lateral fissure, postcentral gyrus, and middle/lateral occipital cortex, and greater CT in the right paracentral, posterior cingulate, and superior occipital gyrus. In terms of GMV, greater hyperarousal symptom severity was associated with reduced left amygdala GMV, while greater active avoidance symptom severity was associated with greater right amygdala GMV. These findings suggest that structural brain alterations among women with IPV-related PTSD may be driven by symptom severity within specific symptom clusters and that PTSD symptom clusters may have a differential (increased or decreased) association with brain structures.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 January 2021