loading Please wait. Data is being processed...

News of Inventions: 303785
Files of Inventions: 220
Groups of Inventors: 50

Friend Requests:
Private Messages:

Today's News: 17
Yesterday's News: 294

Today: 20 October 2020, Tuesday.

All latest news of Inventions in one place

Listed news of Inventions: 82 from total 303785

Filters


Welcome, Guest

News for Theoretical sciences





#1

 

View it
Name
Description Thouless charge pumping protocols provide a route for one-dimensional systems to realize topological transport. Here, using arrays of evanescently coupled optical waveguides, we experimentally demonstrate bulk Thouless pumping in the presence of disorder. The degree of pumping is quite tolerant to significant deviations from adiabaticity as well as the addition of system disorder until the disorder is sufficiently strong to reduce the bulk mobility gap of the system to be on the scale of the modulation frequency of the system. Moreover, we show that this approach realizes near-full-unit-cell transport per pump cycle for a physically relevant class of localized initial system excitations. Thus, temporally pumped systems can potentially be used as a design principle for a new class of modulated slow-light devices that are resistant to system disorder. Research into the effect of temporally-modulated pumping in coupled optical waveguides may aid the design of future on-chip slow light devices. The result could be designs which are more robust against disorder and fabrication imperfections. Alexander Cerjan and coworkers from Pennsylvania State University and the University of Pittsburgh in the USA studied adiabatic pumping, also known as Thouless pumping, in a one-dimensional array of laser-written evanescently-coupled waveguides in borosilicate glass. Nearly quantized topological transport of light was observed, even in the presence of disorder which was introduced by a variation in the spacing between neighboring waveguides. The adiabatic pumping was achieved by dynamically modulating the refractive index of the waveguide array (where temporal modulation was mapped to spatial variations). Future research will explore the connection between Thouless pumping and dynamical quantum ratchets.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#2

 

View it
Name
Description Mammalian pheromones often linger in the environment and thus are particularly susceptible to interceptive eavesdropping, commonly understood as a one-way dyadic interaction, where prey sense and respond to the scent of a predator. Here, we tested the “counterespionage” hypothesis that predator and prey co-opt each other’s pheromone as a cue to locate prey or evade predation. We worked with wild brown rats (predator of mice) and wild house mice (prey of brown rats) as model species, testing their responses to pheromone-baited traps at infested field sites. The treatment trap in each of two trap pairs per replicate received sex attractant pheromone components (including testosterone) of male mice or male rats, whereas corresponding control traps received only testosterone, a pheromone component shared between mouse and rat males. Trap pairs disseminating male rat pheromone components captured 3.05 times fewer mice than trap pairs disseminating male mouse pheromone components, and no female mice were captured in rat pheromone-baited traps, indicating predator aversion. Indiscriminate captures of rats in trap pairs disseminating male rat or male mouse pheromone components, and fewer captures of rats in male mouse pheromone traps than in (testosterone-only) control traps indicate that rats do eavesdrop on the male mouse sex pheromone but do not exploit the information for mouse prey location. The counterespionage hypothesis is supported by trap catch data of both mice and rats but only the mice data are in keeping with our predictions for motive of the counterespionage.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#3

 

View it
Name
Description Ceramide is a major actor in the sphingolipid signaling pathway elicited by various kinds of cell stress. Under those conditions ceramide (Cer) is produced in the plasma membrane as a product of sphingomyelin (SM) hydrolysis, and this may lead to apoptosis. Thus, SM and Cer coexist in the membrane for some time, and they are known to separate laterally from the (more abundant) glycerolipids, giving rise to highly rigid domains or platforms. The properties of these domains/platforms are rather well understood, but the underlying SM:Cer molecular interactions have not been explored in detail. Infrared (IR) spectroscopy is a powerful analytical technique that provides information on all the chemical groupings in a molecule, and that can be applied to membranes and lipid bilayers in aqueous media. IR spectra can be conveniently retrieved as a function of temperature, thus revealing the thermotropic transitions of SM and its mixtures with Cer. Four regions of the IR spectrum of these sphingolipids have been examined, two of them dominated by the hydrophobic regions in the molecules, namely the C–H stretching vibrations (2800–3000 cm−1), and the CH2 scissoring vibrations (1455–1485 cm−1), and two others arising from chemical groups at the lipid-water interface, the sphingolipid amide I band (1600–1680 cm−1), and the phosphate vibrations in the 1000–1110 cm−1 region. The latter two regions have been rarely studied in the past. The IR data from the hydrophobic components show a gel (or ripple)-fluid transition of SM at 40 °C, that is shifted up to about 70 °C when Cer is added to the bilayers, in agreement with previous studies using a variety of techniques. IR information concerning the polar parts is more interesting. The amide I (carbonyl) band of pure SM exhibits a maximum at 1638 cm−1 at room temperature, and its position is shifted by about 10 cm−1 in the presence of Cer. Cer causes also a change in the overall band shape, but no signs of band splitting are seen, suggesting that SM and Cer carbonyl groups are interacting tightly, presumably through H-bonds. The 1086 cm−1 band, corresponding to PO2− vibrations, appears more stable in SM than in DPPC, and it is further stabilized by Cer, again suggesting an important role of H-bonds in the formation of SM:Cer clusters. Thus, SM and Cer can interact through their polar headgroups, in a way that is not accessible to other lipid classes.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#4

 

View it
Name
Description Although cells of mushroom-producing fungi typically contain paired haploid nuclei (n + n), most Armillaria gallica vegetative cells are uninucleate. As vegetative nuclei are produced by fusions of paired haploid nuclei, they are thought to be diploid (2n). Here we report finding haploid vegetative nuclei in A. gallica at multiple sites in southeastern Massachusetts, USA. Sequencing multiple clones of a single-copy gene isolated from single hyphal filaments revealed nuclear heterogeneity both among and within hyphae. Cytoplasmic bridges connected hyphae in field-collected and cultured samples, and we propose nuclear migration through bridges maintains this nuclear heterogeneity. Growth studies demonstrate among- and within-hypha phenotypic variation for growth in response to gallic acid, a plant-produced antifungal compound. The existence of both genetic and phenotypic variation within vegetative hyphae suggests that fungal individuals have the potential to evolve within a single generation in response to environmental variation over time and space.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#5

 

View it
Name
Description Current understanding of heat shock response has been complicated by the fact that heat stress is inevitably accompanied by changes in specific growth rates and growth stages. In this study, a chemostat culture was successfully performed to avoid the physico-chemical and biological changes that accompany heatshock, which provided a unique opportunity to investigate the full range of cellular responses to thermal stress, ranging from temporary adjustment to phenotypic adaptation at multi-omics levels. Heat-responsive and time-resolved changes in the transcriptome and metabolome of a widely used E. coli strain BL21(DE3) were explored in which the temperature was upshifted from 37 to 42 °C. Omics profiles were categorized into early (2 and 10 min), middle (0.5, 1, and 2 h), and late (4, 8, and 40 h) stages of heat stress, each of which reflected the initiation, adaptation, and phenotypic plasticity steps of the stress response. The continued heat stress modulated global gene expression by controlling the expression levels of sigma factors in different time frames, including unexpected downregulation of the second heatshock sigma factor gene (rpoE) upon the heat stress. Trehalose, cadaverine, and enterobactin showed increased production to deal with the heat-induced oxidative stress. Genes highly expressed at the late stage were experimentally validated to provide thermotolerance. Intriguingly, a cryptic capsular gene cluster showed considerably high expression level only at the late stage, and its expression was essential for cell growth at high temperature. Granule-forming and elongated cells were observed at the late stage, which was morphological plasticity occurred as a result of acclimation to the continued heat stress. Whole process of thermal adaptation along with the genetic and metabolic changes at fine temporal resolution will contribute to far-reaching comprehension of the heat shock response. Further, the identified thermotolerant genes will be useful to rationally engineer thermotolerant microorganisms.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#6

 

View it
Name
Description Uterine rupture is a serious public health concern that causes high maternal and perinatal morbidity and mortality in the developing world. Few of the studies conducted in Ethiopia show a high discrepancy in the prevalence of uterine rupture, which ranges between 1.6 and 16.7%. There also lacks a national study on this issue in Ethiopia. This systematic and meta-analysis, therefore, was conducted to assess the prevalence and determinants of uterine rupture in Ethiopia. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic review and meta-analysis of studies. All observational published studies were retrieved using relevant search terms in Google scholar, African Journals Online, CINHAL, HINARI, Science Direct, Cochrane Library, EMBASE and PubMed (Medline) databases. Newcastle–Ottawa assessment checklist for observational studies was used for critical appraisal of the included articles. The meta-analysis was done with STATA version 14 software. The I2 test statistics were used to assess heterogeneity among included studies, and publication bias was assessed using Begg's and Egger's tests. Odds ratio (OR) with a 95% confidence interval (CI) was presented using forest plots. A total of twelve studies were included in this study. The pooled prevalence of uterine rupture was 3.98% (95% CI 3.02, 4.95). The highest (7.82%) and lowest (1.53%) prevalence were identified in Amhara and Southern Nations, Nationality and Peoples Region (SNNPR), respectively. Determinants of uterine rupture were urban residence (OR = 0.15 (95% CI 0.09, 0.23)), primipara (OR = 0.12 (95% CI 0.06, 0.27)), previous cesarean section (OR = 3.23 (95% CI 2.12, 4.92)), obstructed labor(OR = 12.21 (95% CI 6.01, 24.82)), and partograph utilization (OR = 0.12 (95% CI 0.09, 0.17)). Almost one in twenty-five mothers had uterine rupture in Ethiopia. Urban residence, primiparity, previous cesarean section, obstructed labor and partograph utilization were significantly associated with uterine rupture. Therefore, intervention programs should address the identified factors to reduce the prevalence of uterine rupture.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#7

 

View it
Name
Description Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costly experimental studies could be replaced by simulations for movement analysis and virtual product design.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#8

 

View it
Name
Description Nucleophosmin is commonly both over-expressed and mutated in acute myeloid leukemia (AML). NPM1 mutations are always heterozygous. In addition, NPM1 has a number of different splice variants with the major variant encoded by exons 1–9 and 11–12 (NPM1.1). Further variants include NPM1.2 which lacks exons 8 and 10 and NPM1.3 which comprises exons 1–10 (and so lacks the region of sequence mutated in AML). In this study we quantified the expression of these three variants in 108 AML patient samples with and without NPM1 mutations and also assessed the level of expression from the wild-type and mutant alleles in variants NPM1.1 and NPM1.2. The results show that NPM1.1 is the most commonly expressed variant, however transcripts from wild-type and mutated alleles do not occur at equal levels, with a significant bias toward the mutated allele. Considering the involvement of mutant nucleophosmin in the progression and maintenance of AML, a bias towards mutated transcripts could have a significant impact on disease maintenance.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#9

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#10

 

View it
Name
Description Summer research programmes are renowned for encouraging underrepresented minorities (URMs) to pursue STEM careers, but COVID-19 left many students in the United States unable to participate. We created the National Summer Undergraduate Research Project to matchmake students with mentors, enabling 250 URM students to do summer research.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#11

 

View it
Name
Description Music is characterized by acoustic forms that are predictive of its behavioural functions. For example, adult listeners accurately identify unfamiliar lullabies as infant-directed on the basis of their musical features alone. This property could reflect a function of listeners’ experiences, the basic design of the human mind, or both. Here, we show that US infants (N = 144) relax in response to eight unfamiliar foreign lullabies, relative to matched non-lullaby songs from other foreign societies, as indexed by heart rate, pupillometry and electrodermal activity. They do so consistently throughout the first year of life, suggesting that the response is not a function of their musical experiences, which are limited relative to those of adults. The infants’ parents overwhelmingly chose lullabies as the songs that they would use to calm their fussy infant, despite their unfamiliarity. Together, these findings suggest that infants may be predisposed to respond to common features of lullabies found in different cultures. Infants listened to lullabies and other songs recorded in cultures and languages that were unfamiliar to them. They relaxed more in response to the lullabies. This suggests that infants may be predisposed to respond to common features of lullabies.

#Theoretical sciences
Field # Theoretical sciences
Updated 19 October 2020

#12

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 18 October 2020

#13

 

View it
Name
Description Lung adenocarcinoma (LUAD) relies on dysregulated gene expression to sustain its infinite growth and progression. Emerging evidence indicates that aberrant transcriptional program results from core transcriptional regulatory circuitry (CRC) which is driven by super-enhancers (SEs). In this study, by integrating profiles of H3K27Ac chromatin immunoprecipitation sequencing (ChIP-seq) from normal adult lung and LUAD cell lines, we revealed that widespread alterations of the super-enhancer were presence during lung carcinogenesis. With SE-based modeling of regulatory circuits and assessments of transcription factor (TF) dependencies, we reconstructed an interconnected transcriptional regulation network formed by three master TFs, including ELF3, EHF, and TGIF1, all of which promoted each other’s expression that confirmed by ChIP-qPCR and western blot. Loss-of function assay revealed that each of them is essential for LUAD cells survival, invasion and metastasis. Meanwhile, the rescue assay also illustrated the transacting transcriptional regulatory circuitry. In addition, the mRNA levels of ELF3, EHF, and TGIF1 were differentially expressed in LUAD tumors and peritumoral tissue. IHC of serial sections revealed that high expressions of CRC (ELF3/EHF/TGIF1-High) were closely associated with high proliferative activity in tumor tissue and poor prognosis on patients with LUAD. Finally, we used small molecular inhibitors to perturb the transcriptional circuitry, also exhibited a prominent anti-cancer effect in vitro. Our findings reveal the mechanism of the transcriptional dysregulation and addiction of LUAD.

#Theoretical sciences
Field # Theoretical sciences
Updated 17 October 2020

#14

 

View it
Name
Description Investigate characteristics of term infants culture-evaluated for early-onset sepsis (EOS) in neonatal intensive care units (NICUs), frequencies of organisms causing EOS, and factors associated with EOS. Using a cohort design, we identified term infants evaluated for EOS with blood, cerebrospinal fluid, or urine cultures in 326 NICUs (2011–2016). Using multivariable logistic regression, we investigated the association between EOS and demographic characteristics. Of 142,410 infants, 1197 (0.8%) had EOS, most commonly caused by group B Streptococcus (GBS; 40.6%). Lower EOS risk was associated with low Apgar score, Cesarean delivery, small for gestational age, prenatal antibiotic exposure, and positive or unknown maternal GBS screening result. Increased risk was associated with prolonged rupture of membranes, maternal age <19 years, vasopressor treatment, and ventilator support. GBS was the most frequent cause of EOS. Early risk factor recognition may help daily management of term infants in NICUs.

#Theoretical sciences
Field # Theoretical sciences
Updated 17 October 2020

#15

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 17 October 2020

#16

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#17

 

View it
Name
Description Both biological and mechanical signals are known to influence cell proliferation. However, biological signals are mostly studied in two-dimensions (2D) and the interplay between these different pathways is largely unstudied. Here, we investigated the influence of the cell culture environment on the response to bFGF, a widely studied and important proliferation growth factor. We observed that human mesenchymal stromal cells (hMSCs), but not fibroblasts, lose the ability to respond to soluble or covalently bound bFGF when cultured on microfibrillar substrates. This behavior correlated with a downregulation of FGF receptor 1 (FGFR1) expression of hMSCs on microfibrillar substrates. Inhibition of actomyosin or the MRTF/SRF pathway decreased FGFR1 expression in hMSCs, fibroblasts and MG63 cells. To our knowledge, this is the first time FGFR1 expression is shown to be regulated through a mechanosensitive pathway in hMSCs. These results add to the sparse literature on FGFR1 regulation and potentially aid designing tissue engineering constructs that better control cell proliferation. Zonderland et al discover that fibroblasts and mesenchymal stromal cells (MSCs) differ in their response to bFGF when grown on microfibrillar substrates. They find that MSCs cultured on this substrate leads to reduced FGFR levels, as does inhibition of actomyosin contractility or MRT/SRF, suggesting mechanosensitive control of FGFR.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#18

 

View it
Name
Description The human body supports a thriving diversity of microbes which comprise a dynamic, ancillary, functional system that synergistically develops in lock-step with physiological development of its host. The human microbiome field has transitioned from cataloging this rich diversity to dissecting molecular mechanisms by which microbiomes influence human health. Early life microbiome development trains immune function. Thus, vertically, horizontally, and environmentally acquired microbes and their metabolites have the potential to shape developmental trajectories with life-long implications for health.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#19

 

View it
Name
Description Electrodermal activity (EDA) — the sweat-induced fluctuations of skin conductance made famous in TV dramatizations of lie-detector tests — can be a truly strong indicator of the subconscious, or “sympathetic,” nervous system activity for all kinds of purposes, but only if it is analyzed optimally. I

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#20

 

View it
Name
Description Although gold-standard histological assessment is subjective it remains central to diagnosis and clinical trial protocols and is crucial for the evaluation of any preclinical disease model. Objectivity and reproducibility are enhanced by quantitative analysis of histological images but current methods require application-specific algorithm training and fail to extract understanding from the histological context of observable features. We reinterpret histopathological images as disease landscapes to describe a generalisable framework defining topographic relationships in tissue using geoscience approaches. The framework requires no user-dependent training to operate on all image datasets in a classifier-agnostic manner but is adaptable and scalable, able to quantify occult abnormalities, derive mechanistic insights, and define a new feature class for machine-learning diagnostic classification. We demonstrate application to inflammatory, fibrotic and neoplastic disease in multiple organs, including the detection and quantification of occult lobular enlargement in the liver secondary to hilar obstruction. We anticipate this approach will provide a robust class of histological data for trial stratification or endpoints, provide quantitative endorsement of experimental models of disease, and could be incorporated within advanced approaches to clinical diagnostic pathology.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#21

 

View it
Name
Description Targeting epidermal growth factor receptor (EGFR) through tyrosine kinase inhibitors (TKI) is a successful therapeutic strategy in non-small cell lung cancer. However, the response to TKI therapy depends on specific activating and acquired mutations in the tyrosine kinase domain of the EGFR gene. Therefore, confirming the EGFR status of patients is crucial, not only for determining the eligibility, but also for monitoring the emergence of mutations in patients under TKI therapy. In this study, our aim was to develop a cost effective, yet sensitive, technique that allows the detection of therapeutically-relevant EGFR hotspot mutations at isothermal conditions in a non-invasive manner. Previously, we developed an allele-specific loop-mediated isothermal amplification (AS-LAMP) assay for screening germline and somatic de novo T790M EGFR mutation in lung cancer patients. In this study, we used cell free DNA as a template in AS-LAMP assay (CF-LAMP) for non-invasive detection of two hotspot EGFR mutations (T790M, and L858R) and compared its efficiency with ultrasensitive droplet digital PCR (ddPCR) assay. The results of CF-LAMP assay were consistent with those obtained in ddPCR assay, indicating the robustness of the method. CF-LAMP may serve as a valuable and cost-effective alternative for liquid biopsy techniques used in molecular diagnosis of non-small cell lung cancer.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#22

 

View it
Name
Description Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#23

 

View it
Name
Description The generation of a wide range of candidate antibodies is important for the successful development of drugs that simultaneously satisfy multiple requirements. To find cooperative mutations and increase the diversity of mutants, an in silico double-point mutation approach, in which 3D models of all possible double-point mutant/antigen complexes are constructed and evaluated using interaction analysis, was developed. Starting from an antibody with very high affinity, four double-point mutants were designed in silico. Two of the double-point mutants exhibited improved affinity or affinity comparable to that of the starting antibody. The successful identification of two active double-point mutants showed that a cooperative mutation could be found by utilizing information regarding the interactions. The individual single-point mutants of the two active double-point mutants showed decreased affinity or no expression. These results suggested that the two active double-point mutants cannot be obtained through the usual approach i.e. a combination of improved single-point mutants. In addition, a triple-point mutant, which combines the distantly located active double-point mutation and an active single-point mutation collaterally obtained in the process of the double-point mutation strategy, was designed. The triple-point mutant showed improved affinity. This finding suggested that the effects of distantly located mutations are independent and additive. The double-point mutation approach using the interaction analysis of 3D structures expands the design repertoire for mutants, and hopefully paves a way for the identification of cooperative multiple-point mutations.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#24

 

View it
Name
Description The ability to visualize intraluminal surface of peritoneal dialysis (PD) catheter and peritoneal cavity could allow elucidation of the cases of outflow problems, and provide information on changes to the peritoneal membrane leading to encapsulating peritoneal sclerosis. A non-invasive examination that allows those monitoring in need is desirable. We have developed a disposable ultra-fine endoscope that can be inserted into the lumen of the existing PD catheter, allowing observation of the luminal side of the catheter and peritoneal cavity from the tip of the PD catheter, with minimum invasion in practice. In a pre-clinical study in pigs and a clinical study in 10 PD patients, the device provided detailed images, enabling safe, easy observation of the intraluminal side of the entire catheter, and of the morphology and status of the peritoneal surface in the abdominal cavity under dwelling PD solution. Since this device can be used repeatedly during PD therapy, clinical application of this device could contribute to improved management of clinical issues in current PD therapy, positioning PD as a safer, more reliable treatment modality for end-stage renal disease.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#25

 

View it
Name
Description Microbe-mineral interactions are ubiquitous and can facilitate major biogeochemical reactions that drive dynamic Earth processes such as rock formation. One example is microbially induced calcium carbonate precipitation (MICP) in which microbial activity leads to the formation of calcium carbonate precipitates. A majority of MICP studies have been conducted at the mesoscale but fundamental questions persist regarding the mechanisms of cell encapsulation and mineral polymorphism. Here, we are the first to investigate and characterize precipitates on the microscale formed by MICP starting from single ureolytic E. coli MJK2 cells in 25 µm diameter drops. Mineral precipitation was observed over time and cells surrounded by calcium carbonate precipitates were observed under hydrated conditions. Using Raman microspectroscopy, amorphous calcium carbonate (ACC) was observed first in the drops, followed by vaterite formation. ACC and vaterite remained stable for up to 4 days, possibly due to the presence of organics. The vaterite precipitates exhibited a dense interior structure with a grainy exterior when examined using electron microscopy. Autofluorescence of these precipitates was observed possibly indicating the development of a calcite phase. The developed approach provides an avenue for future investigations surrounding fundamental processes such as precipitate nucleation on bacteria, microbe-mineral interactions, and polymorph transitions.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#26

 

View it
Name
Description Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues. In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns. In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2. Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes.

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#27

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 16 October 2020

#28

 

View it
Name
Description Why lightning sometimes has multiple discharges to ground is an unanswered question. Recently, the observation of small plasma structures on positive leaders re-ignited the search. These small plasma structures were observed as pulsing radio sources along the positive leader length and were named “needles”. Needles may be the missing link in explaining why lightning flickers with multiple discharges, but this requires further confirmation. In this work we present the first optical observations of these intriguing plasma structures. Our high-speed videos show needles blinking in slow motion in a sequential mode. We show that they are formed at unsuccessful leader branches, are as bright as the lightning leaders, and report several other optical characteristics.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#29

 

View it
Name
Description Benzene, toluene, ethylbenzene and (p-, m- and o-) xylene (BTEX) are classified as main pollutants by several environmental protection agencies. In this study, a non-pathogenic, Gram-positive rod-shape bacterium with an ability to degrade all six BTEX compounds, employed as an individual substrate or as a mixture, was isolated. The bacterial isolate was identified as Bacillus amyloliquefaciens subsp. plantarum strain W1. An overall BTEX biodegradation (as individual substrates) by strain W1 could be ranked as: toluene > benzene, ethylbenzene, p-xylene > m-xylene > o-xylene. When presented in a BTEX mixture, m-xylene and o-xylene biodegradation was slightly improved suggesting an induction effect by other BTEX components. BTEX biodegradation pathways of strain W1 were proposed based on analyses of its metabolic intermediates identified by LC–MS/MS. Detected activity of several putative monooxygenases and dioxygenases suggested the versatility of strain W1. Thus far, this is the first report of biodegradation pathways for all of the six BTEX compounds by a unique bacterium of the genus Bacillus. Moreover, B. amyloliquefaciens subsp. plantarum W1 could be a good candidate for an in situ bioremediation considering its Generally Recognized as Safe (GRAS) status and a possibility to serve as a plant growth-promoting rhizobacterium (PGPR).

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#30

 

View it
Name
Description The magmatic history of the Oldest Toba Tuff (OTT), the second largest in volume after the Youngest Toba Tuff (YTT), northern Sumatra, Indonesia, was investigated using U–Pb zircon dating by LA-ICP-MS. Zircon dates obtained from surface and interior sections yielded ages of 0.84 ± 0.03 Ma and 0.97 ± 0.03 Ma, respectively. The youngest OTT zircon ages were in accordance with the 40Ar/39Ar eruption age of ~ 0.8 Ma, whereas the oldest zircon dates were ~ 1.20 Ma. Therefore, the distribution of zircon U–Pb ages is interpreted to reflect protracted zircon crystallization, suggesting that the estimated 800–2,300 km3 of OTT magma accumulated and evolved for at least 400,000 years prior to eruption. This result is comparable to the volume and timescales of YTT magmatism. The similarities of both magmatic duration and geochemistry between OTT and YTT may indicate that they are similar in size and that the caldera collapse that generated OTT might be much larger previously interpreted.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#31

 

View it
Name
Description Despite being studied for nearly 50 years, smallest chemically stable moieties in the metallic glass (MG) could not be found experimentally. Herein, we demonstrate a novel experimental approach based on electrochemical etching of amorphous alloys in inert solvent (acetonitrile) in the presence of a high voltage (1 kV) followed by detection of the ions using electrolytic spray ionization mass spectrometry (ESI MS). The experiment shows stable signals corresponding to Pd, PdSi and PdSi2 ions, which emerges due to the electrochemical etching of the Pd80Si20 metallic glass electrode. These fragments are observed from the controlled dissolution of the Pd80Si20 melt-spun ribbon (MSR) electrode. Annealed electrode releases different fragments in the same experimental condition. These specific species are expected to be the smallest and most stable chemical units from the metallic glass which survived the chemical dissolution and complexation (with acetonitrile) process. Theoretically, these units can be produced from the cluster based models for the MG. Similar treatment on Pd40Ni40P20 MSR resulted several complex peaks consisting of Pd, Ni and P in various combinations suggesting this can be adopted for any metal-metalloid glass.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#32

 

View it
Name
Description Cytochrome P450 (CYP) is involved in the metabolism of nevirapine (NVP); especially, CYP2B6 has been known to be one of the main enzymes involved in NVP metabolism. The objective of this study was to investigate the effects of CYP2B6 variants on plasma concentrations of NVP by a systematic review and meta-analysis. A search for qualifying studies published until April 2020 was conducted using the EMBASE, PubMed, and Web of Science databases. The mean difference (MD) and 95% confidence intervals (CIs) were calculated. Data analysis was performed using R Studio (version 3.6) and Review Manager (version 5.3). In total, data from six studies involving 634 patients were analyzed in the systematic review and five studies in the meta-analysis. We found that carriers of the CYP2B6 516TT genotype had a 2.18 µg/mL higher NVP concentration than did the GG or GT (95% CI 1.28–3.08). In the respective comparisons of the three genotypes, it was found that the MD was 1.87 µg/mL between the TT and GT groups, 2.53 µg/mL between TT and GG, and 0.60 µg/mL between GT and GG. This meta-analysis confirmed that CYP2B6 polymorphisms was associated with plasma NVP concentrations. Therefore, CYP2B6 genotyping may be useful to predict the responses to NVP.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#33

 

View it
Name
Description Cryopreservation is a well-established method for bone storage. However, the ideal timing of mechanical testing after sacrificing the experimental animals is still under discussion and of significant importance to the presentation of accurate results. Therefore, the aim of this study was to investigate and compare different cryopreservation durations to native murine bone and whether there was an influence on mechanical bone testing. For this study the tibias of 57 female C57BL/6 mice—18-weeks of age—were harvested and randomly allocated to one of four groups with varying storage times: (1) frozen at −80 °C for 3 months, (2) frozen at −80 °C for 6 months, (3) frozen at −80 °C for 12 months and (4) native group. The native group was immediately tested after harvesting. The comparison of the mean strength and load to failure rates demonstrated a significant difference between the storage groups compared to the native control (p = 0.007). However, there was no difference in the strength and the load to failure values of bones of all storage groups when compared against each other. Once cryopreservation at −80 °C is performed, no differences of mechanical bone properties are seen up to 12 months of storage. When actual in vivo data is of close interest, immediate testing should be considered and is preferred. If comparison of groups is required and long-time storage is necessary, cryopreservation seems to be an accurate method at present.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#34

 

View it
Name
Description The pollution of water by heavy metal ions and dyes, particularly from industrial effluents, has become a global environmental issue. Therefore, the treatment of wastewater generated from different industrial wastes is essential to restore environmental quality. The efficiency of Gracilaria seaweed biomass as a sustainable biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from aqueous solution was studied. Optimization of the biosorption process parameters was performed using face-centered central composite design (FCCCD). The highest bioremoval percentages of Ni2+ and methylene blue were 97.53% and 94.86%; respectively, obtained under optimum experimental conditions: 6 g/L Gracilaria biomass, initial pH 8, 20 mg/L of methylene blue, 150 mg/L of Ni2+ and 180 min of contact time. Fourier Transform Infrared Spectroscopy (FTIR) spectra demonstrated the presence of methyl, alkynes, amide, phenolic, carbonyl, nitrile and phosphate groups which are important binding sites involved in Ni2+ and methylene blue biosorption process. SEM analysis reveals the appearance of shiny large particles and layers on the biosorbent surface after biosorption that are absent before the biosorption process. In conclusion, it is demonstrated that the Gracilaria seaweed biomass is a promising, biodegradable, ecofriendly, cost-effective and efficient biosorbent for simultaneous bioremoval of Ni2+ and methylene blue from wastewater effluents.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#35

 

View it
Name
Description Each natural mode of the electromagnetic field within a parabolic mirror exhibits spatial localization and polarization properties that can be exploited for the quantum control of its interaction with atomic systems. The region of localization is not restricted to the focus of the mirror leading to a selective response of atomic systems trapped on its vicinity. We report calculations of the spontaneous emission rates for an atom trapped inside the mirror accounting for all atomic polarizations and diverse trapping regions. It is shown that electric dipole transitions can be enhanced near the focus of a deep parabolic mirror with a clear identification of the few vectorial modes involved. Out of the focus the enhancement vanishes gradually, but the number of relevant modes remains small. Ultimately this represents a quantum electrodynamic system where internal and external degrees of freedom cooperate to maximize a selective exchange and detection of single excitations.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#36

 

View it
Name
Description Evidence suggests a positive effect of dog ownership on physical activity. However, most previous studies used self-reported physical activity measures. Additionally, it is unknown whether owning a dog is associated with adults’ sedentary behaviour, an emerging health risk factor. In this study, physical activity and sedentary behaviour were objectively collected between 2013 and 2015 from 693 residents (aged 40–64 years) living in Japan using accelerometer devices. Multivariable linear regression models were used, adjusted for several covariates. The means of total sedentary time and the number of long (≥ 30 min) sedentary bouts were 26.29 min/day (95% CI − 47.85, − 4.72) and 0.41 times/day (95% CI − 0.72, − 0.10) lower for those who owned a dog compared to those not owning a dog, respectively. Compared with non-owners, dog-owners had significantly higher means of the number of sedentary breaks (95% CI 0.14, 1.22), and light-intensity physical activity (95% CI 1.31, 37.51). No significant differences in duration of long (≥ 30 min) sedentary bouts, moderate, vigorous, and moderate-to-vigorous-intensity physical activity were observed between dog-owners and non-owners. A novel finding of this study is that owning a dog was associated with several types of adults’ sedentary behaviours but not medium-to-high-intensity physical activities. These findings provide new insights for dog-based behavioural health interventions on the benefits of dog ownership for reducing sedentary behaviour.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#37

 

View it
Name
Description This paper analyzed the compositional and structural changes of humic acid (HA) after combined with phosphate fertilizer (PHA), and investigated its effects on the growth of maize seedlings with four humic acid concentrations. The results showed that the atomic ratios of O/C and (O + N)/N of PHA were significantly lower than those of HA, which indicated that PHA had poor hydrophilicity compared with HA. The spectra of FTIR and NMR results suggested that the relative content of carboxyl group in PHA was higher than that in HA. X-ray photoelectron spectroscopy technology showed that the relative amount of C–C in PHA was lower than that in HA, while C–H was the opposite. The above changes were attributed to the crack of HA structure during the preparation of humic acid enhanced phosphate fertilizer, which was verified by the results from the determination of gel permeation chromatography that there were more low molecular weight components in PHA than that in HA. However, compared with HA, PHA showed a worse effect in promoting growth and the uptake of nitrogen, phosphorus and potassium by maize seedlings. This worse effect might be attributed to the poor hydrophilicity and unsuitable addition amount of PHA.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#38

 

View it
Name
Description Functional connectivity analyses focused on frequency-domain relationships, i.e. frequency coupling, powerfully reveal neurophysiology. Coherence is commonly used but neural activity does not follow its Gaussian assumption. The recently introduced mutual information in frequency (MIF) technique makes no model assumptions and measures non-Gaussian and nonlinear relationships. We develop a powerful MIF estimator optimized for correlating frequency coupling with task performance and other relevant task phenomena. In light of variance reduction afforded by multitaper spectral estimation, which is critical to precisely measuring such correlations, we propose a multitaper approach for MIF and compare its performance with coherence in simulations. Additionally, multitaper MIF and coherence are computed between macaque visual cortical recordings and their correlation with task performance is analyzed. Our multitaper MIF estimator produces low variance and performs better than all other estimators in simulated correlation analyses. Simulations further suggest that multitaper MIF captures more information than coherence. For the macaque data set, coherence and our new MIF estimator largely agree. Overall, we provide a new way to precisely estimate frequency coupling that sheds light on task performance and helps neuroscientists accurately capture correlations between coupling and task phenomena in general. Additionally, we make an MIF toolbox available for the first time.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#39

 

View it
Name
Description The physical characterisation, capture and detection of extracellular vesicles (EVs) and exosomes derived from breath condensate is reported. Breath-derived EVs were isolated from breath condensate and captured on a gold substrate using two complimentary methods. The characterised and isolated EVs were detected using surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS). EIS was done using aptamers as a targeting moiety and showed a larger change in resistance between dilute concentrations of EVs (less than 7 μg/mL).This is the first report of EVs and exosomes isolated and characterised from breath. In addition, EVs from a non-invasive and easily available source such as breath opens up further avenues in the detection of pulmonary diseases.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#40

 

View it
Name
Description Photonic qubits memories are essential ingredients of numerous quantum networking protocols. The ideal situation features quantum computing nodes that are efficiently connected to quantum communication channels via quantum interfaces. The nodes contain a set of long-lived matter qubits, the channels support the propagation of light qubits, and the interface couples light and matter qubits. Toward this vision, we here demonstrate a random-access multi-qubit write-read memory for photons using two rubidium atoms coupled to the same mode of an optical cavity, a setup that is known to feature quantum computing capabilities. We test the memory with more than ten independent photonic qubits, observe no noticeable cross-talk, and find no need for re-initialization even after ten write-read attempts. The combined write-read efficiency is 26% and the coherence time approaches 1 ms. With these features, the node constitutes a promising building block for a quantum repeater and ultimately a quantum internet.

#Theoretical sciences;#Hardware & Devices
Field # Theoretical sciences
Updated 15 October 2020

#41

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#42

 

View it
Name
Description Using specialized nanoparticles, researchers from Penn Engineering and the Massachusetts Institute of Technology (MIT) have developed a way to turn off specific genes in cells of bone marrow, which play an important role in producing blood cells. These particles could be tailored to help treat heart

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#43

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#44

 

View it
Name
Description We provide herein an overview of the present issue while introducing two new features that complement our submission and publication process.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#45

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#46

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#47

 

View it
Name
Description This paper presents two methods for the efficient evaluation of the power balance in circular metasurface (MTS) antennas implementing arbitrary modulated surface impedances on a grounded dielectric slab. Both methods assume the surface current in the homogenized MTS to be known. The first technique relies on the surface current expansion with Fourier-Bessel basis functions (FBBF) and proceeds by integration of the Poynting vector on a closed surface. The second method is based on the evaluation of the residue of the electric field spectrum at the surface-wave (SW) pole, and is demonstrated by using a current expansion in Gaussian ring basis functions (GRBF). The surface current expansions can be directly obtained either by analyzing the antenna with a Method of Moments (MoM) tool for homogenized MTSs based on FBBF or GRBF, or derived by a projection process. From there, the power contributions, namely the total power delivered by the feed, the radiated power, the SW power, and the Ohmic power losses in the dielectric are computed. Several efficiency metrics are presented and discussed: tapering efficiency, conversion efficiency, loss factor, and diffraction factor. Since the MTS apertures at hand are leaky-wave (LW) antennas, the designer must find a compromise between the aperture efficiency and the conversion efficiency. This requires accurate and fast computational techniques for the efficiency. The present paper demonstrates for the first time that the efficiency of MTS antenna devices can be accurately evaluated in a few minutes. The compromise that should be made during the design process between the tapering efficiency and the conversion efficiency is highlighted. The impact on the efficiency of isotropic versus anisotropic MTS, uniform versus non-uniform modulation index, is analyzed. An excellent agreement is obtained between both approaches, commercial software, and experimental data.

#Theoretical sciences
Field # Theoretical sciences
Updated 15 October 2020

#48

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#49

 

View it
Name
Description Bacterial biofilms are difficult to inactivate due to their high antimicrobial resistance. Therefore, new approaches are required for more effective bacterial biofilm inactivation. Airborne acoustic ultrasound improves bactericidal or bacteriostatic activity which is safe and environmentally friendly. While, plasma activated water (PAW) is attracting increasing attention due to its strong antimicrobial properties. This study determined efficacy of combined airborne acoustic ultrasound and plasma activated water from both cold and thermal plasma systems in inactivating Escherichia coli K12 biofilms. The application of airborne acoustic ultrasound (15 min) alone was significantly more effective in reducing E. coli counts in 48 and 72 h biofilms compared to 30 min treatment with PAW. The effect of airborne acoustic ultrasound was more pronounced when used in combination with PAW. Airborne acoustic ultrasound treatment for 15 min of the E. coli biofilm followed by treatment with PAW significantly reduced the bacterial count by 2.2—2.62 Log10 CFU/mL when compared to control biofilm treated with distilled water. This study demonstrates that the synergistic effects of airborne acoustic ultrasound and PAW for enhanced antimicrobial effects. These technologies have the potential to prevent and control biofilm formation in food and bio-medical applications.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#50

 

View it
Name
Description Synthetic biology is among the most hyped research topics this century, and in 2010 it entered its teenage years. But rather than these being a problematic time, we’ve seen synthetic biology blossom and deliver many new technologies and landmark achievements.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#51

 

View it
Name
Description Culex pipiens is a major carrier of the West Nile Virus, the leading cause of mosquito-borne disease in the continental United States. Cx. pipiens survive overwinter through diapause which is an important survival strategy that is under the control of insulin signaling and Foxo by regulating energy metabolism. Three homologous candidate genes, glycogen synthase (glys), atp-binding cassette transporter (atp), and low-density lipoprotein receptor chaperone (ldlr), that are under the regulation of Foxo transcription factor were identified in Cx. pipiens. To validate the gene functions, each candidate gene was silenced by injecting the target dsi-RNA to female Cx. pipiens during the early phase of diapause. The dsi-RNA injected diapause-destined female post-adult eclosion were fed for 7 days with 10% glucose containing 1% d-[13C6]glucose. The effects of dsi-RNA knockdown on glucose metabolism in intact mosquitoes were monitored using 13C solid-state NMR and ATR-FTIR. Our finding shows that the dsi-RNA knockdown of all three candidate genes suppressed glycogen and lipid biosyntheses resulting in inhibition of long-term carbon energy storage in diapausing females.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#52

 

View it
Name
Description Many creatures have the ability to traverse challenging environments by using their active muscles with anisotropic structures as the motors in a highly coordinated fashion. However, most artificial robots require multiple independently activated actuators to achieve similar purposes. Here we report a hydrogel-based, biomimetic soft robot capable of multimodal locomotion fueled and steered by light irradiation. A muscle-like poly(N-isopropylacrylamide) nanocomposite hydrogel is prepared by electrical orientation of nanosheets and subsequent gelation. Patterned anisotropic hydrogels are fabricated by multi-step electrical orientation and photolithographic polymerization, affording programmed deformations. Under light irradiation, the gold-nanoparticle-incorporated hydrogels undergo concurrent fast isochoric deformation and rapid increase in friction against a hydrophobic substrate. Versatile motion gaits including crawling, walking, and turning with controllable directions are realized in the soft robots by dynamic synergy of localized shape-changing and friction manipulation under spatiotemporal light stimuli. The principle and strategy should merit designing of continuum soft robots with biomimetic mechanisms. Artificial robots often require multiple independently activated actuators to achieve multimodal locomotion. Here, the authors report a hydrogel-based, biomimetic soft robot capable of multimodal locomotion fueled and steered by light irradiation.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#53

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#54

 

View it
Name
Description Changes in the barrier mechanisms in the eye should determine the rational route for the administration and dosage of each drug in the treatment of traumatic injuries and other pathologies. The aim of this study was to examine the efficacy of intra-arterial delivery of 14C-riboflavin (as an “indicator”) and compare it with intravenous and intramuscular administration in an animal model of chemical eye burn. 14C-riboflavin (14C-I) was administered by intra-arterial (carotid artery), intravenous (femoral vein) and intramuscular (femoral muscle) routes. The total radioactivity was determined over 2 h in the plasma and structures of the rabbit’s eyes using a scintillation counter. The results of the study show that intravascular administration of 14C-I gives significantly higher concentrations of total radioactivity in the blood and is accompanied by a significant increase in the permeability of the blood-barrier and barrier in eyes suffering from burns. The highest concentration in the plasma and aqueous humour of the anterior chamber of the eye was observed during the first hour with the intra-arterial route of administration of 14C-I in either burnt and unburnt eyes. The distribution of total radioactivity in the structures of the eye over the 2 h of the experiment showed a higher level of the drug under intra-arterial administered in the uveal regions, namely: the iris, ciliary body, choroid, retina and also the sclera and cornea. This experimental model shows that intra-arterial administration can increase the bioavailability of a drug to the structures of the eye within a short period of time.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#55

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#56

 

View it
Name
Description Hydrogel is an attractive material, but its application is limited due to its low mechanical strength. In this study, a tough composite gel could be prepared by synthesizing polymer particles within a polymer network having relatively loose cross-linking. Since the polymer network acts as a dispersion stabilizer during the synthesis of the hydrophobic polymer particles, a large amount of particles could be introduced into the gel without agglomeration. It was suggested that the high level of toughness was induced by the adsorption and desorption of the polymer chains on the surface of the finely packed particles. By using a stimuli-responsive polymer network, elasticity and plasticity of composite gels could be controlled in response to external stimuli, and adhesion on the gel surface could also be modulated.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#57

 

View it
Name
Description Free-range livestock are exposed to environmental contaminants by ingesting contaminated matrices mainly soil. Several works evaluated precisely the soil ingestion and its variation factors in ruminants. Contrary to temperate grazing systems, tropical ones were poorly documented whereas weather or traditional grazing practices may change models established in temperate systems. The study was performed in the French West Indies, which are concerned by a widespread environmental chlordecone contamination. The work evaluated daily soil and grass ingestions by tethered growing bulls grazing on a very high sward close to 50 cm for 11 days without being moved. This grazing management is representative to local practices by small farmers or not professional holders and allows completing the results previously obtained. Daily soil ingestion did not significantly increase across time and was on average 26.9 g dry matter/100 kg body weight (i.e. 1.4% of the total mass ingested). Marked individual variations indicated that exposure risk assessments would require experimental designs based on a sufficient number of individuals. This study was also the first to investigate the changes in sward soiling with respect to the distance from the stake and reported lower soil loading on grass in the peripheral than central and intermediate areas.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#58

 

View it
Name
Description Random packings are crucial in understanding arrangement and geometry of particles. Random packings of dry small particles may be subject to adhesion or friction, as expected theoretically and numerically. We explore experimentally random packings of dry colloids with X-ray nanotomography that directly provides three-dimensional structural and geometric information of dry colloidal packings. We find that dry colloidal packings, as characterized by contact number and packing density, are quite consistent with adhesive loose packings that significantly deviate from random loose packings for hard spheres. This study may offer direct evidence for adhesive loose packings comprising dry small particles, as proven by X-ray nanotomography.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#59

 

View it
Name
Description The aim was to create an algorithm to transform self-reported outcomes from a stroke register to the modified Rankin Scale (mRS). Two stroke registers were used: the Väststroke, a local register in Gothenburg, Sweden, and the Riksstroke, a Swedish national register. The reference variable, mRS (from Väststroke), was mapped with seven self-reported questions from Riksstroke. The transformation algorithm was created as a result of manual mapping performed by healthcare professionals. A supervised machine learning method—decision tree—was used to further evaluate the transformation algorithm. Of 1145 patients, 54% were male, the mean age was 71 y. The mRS grades 0, 1 and 2 could not be distinguished as a result of manual mapping or by using the decision tree analysis. Thus, these grades were merged. With manual mapping, 78% of the patients were correctly classified, and the level of agreement was almost perfect, weighted Kappa (Kw) was 0.81. With the decision tree, 80% of the patients were correctly classified, and substantial agreement was achieved, Kw = 0.67. The self-reported outcomes from a stroke register can be transformed to the mRS. A mRS algorithm based on manual mapping might be useful for researchers using self-reported questionnaire data.

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#60

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#61

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 14 October 2020

#62

 

View it
Name
Description The influence of oxidation and esterification on the ester balance of aged Baijiu and methodology for the rational design of liquor flavors to optimize the practice of Baijiu production are not completely understood. We investigated the influence of ester balance on the flavor compounds of aged Baijiu by conducting constituent analysis of Baijiu from different aging times (0, 1, 2, 3, 4, 5, and 10 years). The changes of the main flavor compounds in the aging process were determined, and the correlations among different chemical reactions, such as oxidation, hydrolysis, and esterification, were systematically expounded. Furthermore, cluster analysis of the heat map indicated significant differences between aged Baijiu and new Baijiu and recommended a suitable aging time of 2–3 years.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#63

 

View it
Name
Description The purpose of this study was to determine the reference ranges of normal upper trapezius (UT) elasticity during different shoulder abduction using shear wave elastography (SWE). Mean shear wave velocity (SWV) of UT elasticity in eighty healthy participants were measured at left and right shoulder 0° abduction and 90° passive abduction (L0°, R0°, L90°, R90°) with SWE. The effects of potential factors (gender, UT thickness, age, and body mass index) on UT elasticity were analyzed. The reference ranges of normal UT elasticity were calculated by using the normal distribution method. UT elasticity was significantly different among various shoulder abduction (P < 0.0001). UT elasticity was significantly higher in males at both L90° (P < 0.05) and R90° (P < 0.01) than in females. The reference ranges of normal UT elasticity were 2.90–4.01 m/s at L0° and 3.01–4.29 m/s at R0°, and were 4.90–6.40 m/s in males and 4.40–6.20 m/s in females at L90°, 5.20–7.02 m/s in males and 4.71–6.80 m/s in females at R90°. Our results suggest that gender should be considered when determining the reference ranges of normal UT elasticity at L90° and R90° with SWE. These values may provide quantitative baseline measurements for the assessment of UT muscle strain in the future.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#64

 

View it
Name
Description Gfi1 is a zinc-finger transcriptional repressor that plays an important role in hematopoiesis. When aberrantly activated, Gfi1 may function as a weak oncoprotein in the lymphoid system, but collaborates strongly with c-Myc in lymphomagenesis. The mechanism by which Gfi1 collaborates with c-Myc in lymphomagenesis is incompletely understood. We show here that Gfi1 augmented the expression of c-Myc protein in cells transfected with c-Myc expression constructs. The N-terminal SNAG domain and C-terminal ZF domains of Gfi1, but not its transcriptional repression and DNA binding activities, were required for c-Myc upregulation. We further show that Gfi1 overexpression led to reduced polyubiquitination and increased stability of c-Myc protein. Interestingly, the levels of endogenous c-Myc mRNA and protein were augmented upon Gfi1 overexpression, but reduced following Gfi1 knockdown or knockout, which was associated with a decline in the expression of c-Myc-activated target genes. Consistent with its role in the regulation of c-Myc expression, Gfi1 promoted Myc-driven cell cycle progression and proliferation. Together, these data reveal a novel mechanism by which Gfi1 augments the biological function of c-Myc and may have implications for understanding the functional collaboration between Gfi1 and c-Myc in lymphomagenesis.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#65

 

View it
Name
Description Various efforts have been made to overcome Doppler broadening in hyperfine measurement limitations in the atomic vapors spectroscopy and associated applications. The present study measured and calculated hyperfine resolved ellipsometric parameters through the near-normal reflectance spectra of the rubidium vapor cell in two experimental setups based on continuous and modulated pathway. The results indicated that valuable information could be extracted from the ellipsometric parameters about the atomic medium. Change in the ellipsometric parameters in each transition line confirms the existence of the elliptical polarization of the reflected light when it is exposed to the alkali metal vapor. Our results show that the ellipticity at 5S1/2 (Fg = 1, 2) → 5P1/2 (Fe = 1, 2) hyperfine transitions of 87Rb (D1 line) is small, and accordingly hyperfine transitions between the ground 5S1/2 (Fg = 2, 3) and excited 5P1/2 (Fe = 2, 3) states of the 85Rb isotope are considerable. These ellipsometric parameters, as phase difference, can trace the behavior of the relative orientation of the electric field and atom velocity in the interface based on van der Waals dipole–dipole interaction and is directly proportional to the strength of the light-matter interaction which extremely useful instead complicated atomic spectroscopic methods.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#66

 

View it
Name
Description Herein, we report a theoretical investigation of large photocurrent density enhancement in a GaAs absorber layer due to non-absorbing spherical dielectric (SiO2) nanoparticles-based antireflection coating. The nanoparticles are embedded in a dielectric matrix (SiN) which improves the antireflection property of SiN ( $$lambda /4$$ coating) and let to pass more photons into the GaAs layer. The improvement is noticed omnidirectional and the highest is more than 100% at 85° angle of incidence with the nanoparticles’ surface filling density of 70%. Sunrise to sunset calculation of normalized photocurrent density over the course of a year have also shown improvements in the nanoparticles’ case.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#67

 

View it
Name
Description Biomimetic scales provide a convenient template to tailor the bending stiffness of the underlying slender substrate due to their mutual sliding after engagement. Scale stiffness can therefore directly impact the substrate behavior, opening a potential avenue for substrate stiffness tunability. Here, we have developed a biomimetic beam, which is covered by tunable stiffness scales. Scale tunability is achieved by specially designed plate like scales consisting of layers of low melting point alloy (LMPA) phase change materials fully enclosed inside a soft polymer. These composite scales can transition between stiff and soft states by straddling the temperatures across LMPA melting points thereby drastically altering stiffness. We experimentally analyze the bending behavior of biomimetic beams covered with tunable stiffness scales of two architectures—one with single enclosure of LMPA and one with two enclosures of different melting point LMPAs. These architectures provide a continuous stiffness change of the underlying substrate post engagement, controlled by the operating temperature. We characterize this response using three-point bending experiments at various temperature profiles. Our results demonstrate for the first time, the pronounced and reversible tunability in the bending behavior of biomimetic scale covered beam, which are strongly dependent on the scale material and architecture. Particularly, it is shown that the bending stiffness of the biomimetic scale covered beam can be actively and reversibly tuned by a factor of up to 7. The developed biomimetic beam has applications in soft robotic grippers, smart segmented armors, deployable structures and soft swimming robots.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#68

 

View it
Name
Description We numerically demonstrate two types of metasurface absorbers to efficiently absorb digital signals. First, we show that the digital waveforms used in this study contain not only a fundamental wave but also nonnegligible harmonic waves, which limits the absorption performance of a conventional metasurface absorber operating in only a single, finite frequency band. The first type of the proposed absorbers is designed using two kinds of unit cells, each of which absorbs either a fundamental frequency or third harmonic of an incident digital waveform. This dual-band metasurface absorber exhibits absorption performance exceeding that of the conventional metasurface absorber and more strongly dissipates the energy of a digital waveform. In addition, the second type of absorber exploits the concept of nonlinear analogous circuits to convert an incoming wave to a different waveform, specifically, a triangular waveform that has a larger magnitude at a fundamental frequency. Therefore, the incoming waveform is more effectively absorbed by this waveform-conversion metasurface absorber as well. Although still there remain some issues to put these digital signal absorbers into practice, including experimental validation, our results contribute to mitigating electromagnetic interference issues caused by digital noise and realising physically smaller, lighter digital signal processing products for the next generation.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#69

 

View it
Name
Description Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#70

 

View it
Name
Description Training of one limb improves performance of the contralateral, untrained limb, a phenomenon known as cross transfer. It has been used for rehabilitation interventions, i.e. mirror therapy, in people with neurologic disorders. However, it remains unknown whether training of the upper limb can induce the cross-transfer effect to the trunk muscles. Using transcranial magnetic stimulation over the primary motor cortex (M1) we examined motor evoked potentials (MEPs) in the contralateral erector spinae (ES) muscle before and after 30 min of unilateral arm cycling in healthy volunteers. ES MEPs were increased after the arm cycling. To understand the origin of this facilitatory effect, we examined short-interval intracrotical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in neural populations controlling in the ES muscle. Notably, SICI reduced after the arm cycling, while CMEPs remained the same. Using bilateral transcranial direct current stimulation (tDCS) in conjunction with 20 min of the arm cycling, the amplitude of ES MEPs increased to a similar extent as with 30 min of the arm cycling alone. These findings demonstrate that a single session of unilateral arm cycling induces short-term plasticity in corticospinal projections to the trunk muscle in healthy humans. The changes are likely driven by cortical mechanisms.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#71

 

View it
Name
Description The triterpene oil squalene is an essential component of nanoemulsion vaccine adjuvants. It is most notably in the MF59 adjuvant, a component in some seasonal influenza vaccines, in stockpiled, emulsion-based adjuvanted pandemic influenza vaccines, and with demonstrated efficacy for vaccines to other pandemic viruses, such as SARS-CoV-2. Squalene has historically been harvested from shark liver oil, which is undesirable for a variety of reasons. In this study, we have demonstrated the use of a Synthetic Biology (yeast) production platform to generate squalene and novel triterpene oils, all of which are equally as efficacious as vaccine adjuvants based on physiochemical properties and immunomodulating activities in a mouse model. These Synthetic Biology adjuvants also elicited similar IgG1, IgG2a, and total IgG levels compared to marine and commercial controls when formulated with common quadrivalent influenza antigens. Injection site morphology and serum cytokine levels did not suggest any reactogenic effects of the yeast-derived squalene or novel triterpenes, suggesting their safety in adjuvant formulations. These results support the advantages of yeast produced triterpene oils to include completely controlled growth conditions, just-in-time and scalable production, and the capacity to produce novel triterpenes beyond squalene.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#72

 

View it
Name
Description Visualization of the depletion layer is a significant a guideline for the material design of gas sensors. We attempted to measure the potential barrier at the interface of core–shell microspheres composed of p-MgO/n-MgFe2O4/Fe2O3 from the inside out by means of Kelvin probe force microscopy (KPFM) as a first step to visualizing enlargement of the depletion layer. As determined by high-angle annular dark-field scanning transmission electron microscopy, ca. 70% of the microspheres were hollow with a wall thickness of ca. 200 nm. Elemental mapping revealed that the hollow particles were composed of ca. 20 nm of MgO, ca. 80 nm of MgFe2O4, and ca. 100 nm of Fe2O3. A difference of 0.2 V at the p-MgO/n-MgFe2O4 interface was clarified by KPFM measurements of the hollow particles, suggesting that this difference depends on the formation of a p–n junction. The potential barrier enlarged by the formation of a p–n junction was considered to increase the resistance in air (Ra), since the Ra of the core–shell hollow microspheres was higher than that of MgO, Fe2O3, MgO–Fe2O3, and MgO/MgFe2O4/Fe2O3 particles with irregular shapes. Measurement of the potential barrier height by KPFM is a promising potential approach to tuning the gas sensitivity of oxide semiconductors.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#73

 

View it
Name
Description Lead (Pb) is the second most toxic metal on Earth and is toxic to humans and other living things. In plants, Pb commonly inhibits growth when it is at a concentration in the soil of 30 mg/kg or more but several Pb tolerant plants have been reported. However, few studies have focused on plant response to Pb exposure, particularly at concentrations higher than 30 mg/kg. The assessment and evaluation of metal dose-dependent plant responses will assist in future phytoremediation studies. Therefore, this work documents the Pb concentration-dependent antioxidative response in Tetraena qataranse. Young seedlings were irrigated with 0, 25, 50, and 100 mg/L Pb every 48 h for seven weeks under greenhouse conditions. A phytotoxicity test showed that at the lowest treatment concentration, Pb stimulates growth. However, at 100 mg/L (1600 mg/kg Pb in the growth medium at harvest), the metal disrupted healthy growth in T. qataranse, particularly root development. Metal accumulation in the root was higher (up to 2784 mg/kg) than that of the shoot (1141.6 mg/kg). Activity assays of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) showed a progressive increase in enzymatic activities due to Pb treatment. Together, the results of this study suggest that T. qataranse is a Pb hyperaccumulator. Increased antioxidant enzyme activity was essential to maintaining cellular homeostasis and assisted in the arid plant’s tolerance to Pb stress.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#74

 

View it
Name
Description Water and salt uptake, and water holding capacity (WHC) of whole gutted Atlantic salmon superchilled at sub-zero temperatures in refrigerated seawater (RSW) were compared to traditional ice storage. Following the entire value chain, the whole salmon was further processed, and fillets were either chilled on ice or dry salted and cold-smoked. Changes in quality parameters including colour, texture, enzyme activity and microbial counts were also analyzed for 3 weeks. Our results showed that when fish were removed from the RSW tank after 4 days and further chilled for 3 days, an overall weight gain of 0.7%, salt uptake of 0.3% and higher WHC were observed. In contrast, ice-stored fish had a total weight loss of 1% and steady salt uptake of 0.1%. After filleting, raw fillets from whole fish initially immersed in RSW had better gaping occurrence, softer texture, lower cathepsin B + L activity but higher microbiological growth. Otherwise, there were no differences in drip loss nor colour (L*a*b*) on both raw and smoked fillets from RSW and iced fish. Storage duration significantly affected quality parameters including drip loss, colour, texture, enzyme activity and microbial counts in raw fillets and drip loss, WHC, redness and yellowness in smoked fillets.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#75

 

View it
Name
Description Catheter ablation for atrial fibrillation (AF) has emerged as an important rhythm-control strategy and is by far the most common cardiac ablation procedure performed worldwide. Current guidelines recommend the procedure in symptomatic patients with paroxysmal or persistent AF who are refractory or intolerant to antiarrhythmic drugs. The procedure might also be considered as a first-line approach in selected asymptomatic patients. Data from large registries indicate that AF ablation might reduce mortality and the risk of heart failure and stroke, but evidence from randomized controlled trials is mixed. Pulmonary vein isolation using point-by-point radiofrequency or with the cryoballoon remains the cornerstone technique in AF ablation. Additional atrial ablation can be performed in patients with persistent AF, but its benefits are largely unproven. Technological advances in the past decade have focused on achieving durable vein isolation, reducing procedure duration and improving safety. Numerous exciting new technologies are in various stages of development. In this Review, we discuss the relevant data to support the recommended and evolving indications for catheter ablation of AF, describe the different ablation techniques, and highlight the latest advances in technology that aim to improve its safety and efficacy. We also discuss lifestyle modification strategies to improve ablation outcomes. Catheter ablation is an important rhythm-control strategy for atrial fibrillation (AF). In this Review, Kalman and colleagues discuss the recommended and evolving indications for catheter ablation of AF, describing the different ablation techniques and highlighting the latest advances in technology that aim to improve its safety and efficacy.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#76

 

View it
Name
Description This study provides evidence that bacterial nanotubes produced by Bacillus subtilis and other bacteria are a feature of cell death rather than physiological structures.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#77

 

View it
Name
Description Ending hunger is a major objective of the United Nations’ Sustainable Development Goals. A cross-journal collection of articles takes a systematic look at what we might already know about achieving it.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#78

 

View it
Name
Description Anyons, particles that are neither bosons nor fermions, were predicted in the 1980s, but strong experimental evidence for the existence of the simplest type of anyons has only emerged this year. Further theoretical and experimental advances promise to nail the existence of more exotic types of anyons, such as Majorana fermions, which would make topological quantum computation possible. Strong experimental evidence for the existence of the simplest type of anyons (particles that are neither bosons nor fermions) has emerged this year. The next step is to uncover more exotic types of anyons, such as Majorana fermions.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#79

 

View it
Name
Description The volume of work contributing substantial understanding and new evidence about sustainability challenges is growing. Making the most of it is imperative for interventions to be really effective.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#80

 

View it
Name
Description Murine caspase-11 is the centerpiece of the non-canonical inflammasome pathway that can respond to intracellular LPS and induce pyroptosis. Caspase-11 contains two components, an N-terminal caspase recruitment domain (CARD) and a C-terminal catalytic domain. The aggregation of caspase-11 is thought to promote the auto-processing and activation of caspase-11. However, the activation mechanism of caspase-11 remains unclear. In this study, we purified the caspase-11 CARD fused to an MBP tag and found it tetramerizes in solution. Crystallographic analysis reveals an extensive hydrophobic interface formed by the H1–2 helix mediating homotypic CARD interactions. Importantly, mutations of the helix H1–2 hydrophobic residues abolished the tetramerization of MBP-tagged CARD in solution and failed to induce pyroptosis in cells. Our study provides the first evidence of the homotypic interaction mode for an inflammatory caspase by crystal model. This finding demonstrates that the tetramerization of the N-terminal CARD can promote releasing of the catalytic domain auto-inhibition, leading to the caspase-11 activation.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#81

 

View it
Name
Description Both above- and below-ground plant traits are known to modulate feedbacks between vegetation and river morphodynamic processes. However, how they collectively influence vegetation establishment on gravel bars remains less clear. Here we develop a numerical model that couples above- and below-ground vegetation dynamics with hydromorphological processes. The model dynamically links plant growth rate to water table fluctuations and includes plant mortality by uprooting and burial. We considered a realistic hydrological regime and used the model to simulate the coevolution of alternate gravel bars and vegetation that displays trade-offs in investment of above- and below-ground biomass. We found that a balanced plant growth above- and below-ground facilitates vegetation to establish on steady, stable bars, because it allows plants to develop traits that maximise growth performance during low flow periods and thus survival during floods. Regardless of the growth strategy, vegetation could not establish on migrating bars because of large plant loss by uprooting during floods. These findings add on previous studies suggesting that morphodynamic processes play a key role on determining plant trait distributions and highlight the importance of including the dynamics of both above- and below-ground plant traits for predicting shifts between bare and vegetated states in river bars.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020

#82

 

View it
Name
Description Protected areas (PAs) are the most important conservation tool, yet assessing their effectiveness is remarkably challenging. We clarify the links between the many facets of PA effectiveness, from evaluating the means, to analysing the mechanisms, to directly measuring biodiversity outcomes.

#Theoretical sciences
Field # Theoretical sciences
Updated 13 October 2020