loading Please wait. Data is being processed...

News of Inventions: 238729
Files of Inventions: 220
Groups of Inventors: 50

Friend Requests:
Private Messages:

Today's News: 199
Yesterday's News: 430

Today: 28 February 2020, Friday.

All latest news of Inventions in one place

Listed news of Inventions: 84 from total 238729

Filters


Welcome, Guest

News for Theoretical sciences





#1

 

View it
Name
Description The characterization of a recently isolated bacteriophage, vB_Eco4M-7, which effectively infects many, though not all, Escherichia coli O157 strains, is presented. The genome of this phage comprises double-stranded DNA, 68,084 bp in length, with a GC content of 46.2%. It contains 96 putative open reading frames (ORFs). Among them, the putative functions of only 35 ORFs were predicted (36.5%), whereas 61 ORFs (63.5%) were classified as hypothetical proteins. The genome of phage vB_Eco4M-7 does not contain genes coding for integrase, recombinase, repressors or excisionase, which are the main markers of temperate viruses. Therefore, we conclude that phage vB_Eco4M-7 should be considered a lytic virus. This was confirmed by monitoring phage lytic development by a one-step growth experiment. Moreover, the phage forms relatively small uniform plaques (1 mm diameter) with no properties of lysogenization. Electron microscopic analyses indicated that vB_Eco4M-7 belongs to the Myoviridae family. Based on mass spectrometric analyses, including the fragmentation pattern of unique peptides, 33 phage vB_Eco4M-7 proteins were assigned to annotated open reading frames. Importantly, genome analysis suggested that this E. coli phage is free of toxins and other virulence factors. In addition, a similar, previously reported but uncharacterized bacteriophage, ECML-117, was also investigated, and this phage exhibited properties similar to vB_Eco4M-7. Our results indicate that both studied phages are potential candidates for phage therapy and/or food protection against Shiga toxin-producing E. coli, as the majority of these strains belong to the O157 serotype.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#2

 

View it
Name
Description The pro-inflammatory adipokine resistin induces a phenotypic switch of vascular smooth muscle cells (VSMC), a process decisive for atherosclerosis, including morphological changes, increased synthetic activity, proliferation and migration. The guanine-exchange factor ARNO (Cytohesin-2) has been shown to be important for morphological changes and migration of other cell types. In this study we dissected the role of ARNO in resistin induced VSMC phenotypic switching and signalling. Firstly, treatment with the cytohesin inhibitor Secin H3 prevented the resistin mediated induction of morphological changes in VSMC. Secondly, Secin H3 treatment as well as expression of an inactive ARNO (EK) reduced resistin induced VSMC synthetic activity, as assessed by matrix metalloproteinase 2 (MMP-2) expression, as well as the migration into a wound in vitro compared to ARNO WT expression. Thirdly, we found ARNO to influence MMP-2 expression and migration via activation of p38 MAPK and the JNK/AP-1 pathway. Interestingly, these processes were shown to be dependent on the binding of PIP3, as mutation of the ARNO PH-domain inhibited VSMC migration, MMP-2 expression as well as p38 MAPK and JNK signalling. Thus, we demonstrate that ARNO is an important link in resistin dependent cell signalling leading to morphological changes, MMP-2 production and migration of VSMC.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#3

 

View it
Name
Description The dog rhinarium (naked and often moist skin on the nose-tip) is prominent and richly innervated, suggesting a sensory function. Compared to nose-tips of herbivorous artio- and perissodactyla, carnivoran rhinaria are considerably colder. We hypothesized that this coldness makes the dog rhinarium particularly sensitive to radiating heat. We trained three dogs to distinguish between two distant objects based on radiating heat; the neutral object was about ambient temperature, the warm object was about the same surface temperature as a furry mammal. In addition, we employed functional magnetic resonance imaging on 13 awake dogs, comparing the responses to heat stimuli of about the same temperatures as in the behavioural experiment. The warm stimulus elicited increased neural response in the left somatosensory association cortex. Our results demonstrate a hitherto undiscovered sensory modality in a carnivoran species.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#4

 

View it
Name
Description 0.5–1% of ALS (Amyotrophic Lateral Sclerosis) and Parkinson's disease (PD) are associated with mutations in the angiogenin (ANG). These mutations are thought to cause disease through a loss of ANG function, but this hypothesis has not been evaluated statistically. In addition, the potential for ANG to promote disease has not been considered. With the goal of better defining the etiology of ANG-ALS, we assembled all clinical onset and disease duration data and determined if these were correlated with biochemical properties of ANG variants. Loss of ANG stability and ribonuclease activity were found to correlate with early ALS onset, confirming an aspect of the prevailing model of ANG-ALS. Conversely, loss of ANG stability and ribonuclease activity correlated with longer survival following diagnosis, which is inconsistent with the prevailing model. These results indicate that functional ANG appears to decrease the risk of developing ALS but exacerbate ALS once in progress. These findings are rationalized in terms of studies demonstrating that distinct mechanisms contribute to ALS onset and progression and propose that ANG replacement or stabilization would benefit pre-symptomatic ANG-ALS patients. However, this study challenges the prevailing hypothesis that augmenting ANG will benefit symptomatic ANG-ALS patients. Instead, our results suggest that silencing of ANG activity may be beneficial for symptomatic ALS patients. This study will serve as a call-to-arms for neurologists to consistently publish ALS and PD patient's clinical data—if all ANG-ALS patients’ data were available our findings could be tested with considerable statistical power.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#5

 

View it
Name
Description Methylation of lysine residues in histone proteins is catalyzed by S-adenosylmethionine (SAM)-dependent histone lysine methyltransferases (KMTs), a genuinely important class of epigenetic enzymes of biomedical interest. Here we report synthetic, mass spectrometric, NMR spectroscopic and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain lysine and its sterically demanding analogs. Our synergistic experimental and computational work demonstrates that human KMTs have a capacity to catalyze methylation of slightly bulkier lysine analogs, but lack the activity for analogs that possess larger aromatic side chains. Overall, this study provides an important chemical insight into molecular requirements that contribute to efficient KMT catalysis and expands the substrate scope of KMT-catalyzed methylation reactions.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#6

 

View it
Name
Description Oxazole has critical roles not only in heterocycle (bio)chemistry research, but also as the backbone of many active natural and medicinal species. These diverse and specialised functions can be attributed to the unique physicochemical properties of oxazole. This contribution investigates the reaction of oxazole and its derivatives with singlet oxygen, employing density functional theory DFT-B3LYP calculations. The absence of allylic hydrogen in oxazole eliminates the ene-mode addition of singlet oxygen to the aromatic ring. Therefore, the primary reaction pathway constitutes the [4 + 2]-cycloaddition of singlet oxygen to oxazole ring, favouring an energetically accessible corridor of 57 kJ/mol to produce imino-anhydride which is postulated to convert to triamide end-product in subsequent steps. The pseudo-first-order reaction rate for substituted oxazole (e.g., 4-methyl-2,5-diphenyloxazole, 1.14 × 106 M−1 s−1) appears slightly higher than that of unsubstituted oxazole (0.94 × 106 M−1 s−1) considering the same initial concentration of the species at 300 K, due to the electronic effect of the functional groups. The global reactivity descriptors have justified the relative influence of the functional groups along with their respective physiochemical properties.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#7

 

View it
Name
Description Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications. Tanya McKitrick et al. develop a platform for generating libraries of anti-glycan reagents using immunized lampreys. They identify 15 glycan-specific lymphocyte receptor antibodies that can distinguish between different functional groups of the terminal glycan motif.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#8

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#9

 

View it
Name
Description Sphincter-saving surgery (SSS) is the gold standard for rectal cancer surgery but results in a wide spectrum of bowel dysfunction. This study investigated the impact of colonic dysmotility on the incontinent form of bowel dysfunction. Bowel function of patients who received SSS with loop ileostomy for treating rectal cancer was reviewed retrospectively from June 2013 two August 2015 at a single hospital. Immediately after closure of a diverting stoma, patients were tested for the colonic transit time (CTT) using radiopaque markers. Bowel dysfunction at 6 and 12 months after SSS was measured as the severity of fecal incontinence according to the Cleveland Clinic Incontinence Score (CCIS) and the use of an anti-diarrheal drug. A short CTT for the left colonic segment was significantly associated with the high CCIS and use of an antidiarrheal agent at 6 months after sphincter preservation. However, the CTT didn’t correlate with the CCIS at 12 months after SSS. Rather, age and surgical method demonstrated a significant association. Colonic dysmotility after SSS appears to intensify fecal incontinence for a relatively short period. Its impact abates within a year.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#10

 

View it
Name
Description Stevia rebaudiana (Bertoni) is one of a very few plant species that produce zero calorie, sweet compounds known as steviol glycosides (SG). SGs differ in their sweetness and organoleptic properties depending on the number and positioning of sugar groups on the core steviol backbone. There is great interest of modulating the SG profiles of the Stevia plant to enhance the flavor profile for a given application in the food and beverage industries. Here, we report a highly efficient Agrobacterium-mediated stable transformation system using axillary shoots as the initial explant. Using this system, we generated over 200 transgenic Stevia plants overexpressing a specific isoform of UGT76G1. By comparing the SG profiles among independent transgenic events, we demonstrated that altering UGT76G1 expression can change the ratios of specific SG species. Furthermore, using recombinant proteins produced in E. coli, we show that two closely related UGT76G1 isoforms differ in their substrate specificities, providing new insights into mechanisms underlying the diversity of SG profiles that are observed across Stevia germplasm. Finally, we found evidence suggesting that alternative and/or aberrant splicing may serve to influence the ability of the plant to produce functional UGT76G1 transcripts, and possibly produce enzyme variants within the plant.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#11

 

View it
Name
Description In this work, the relationship between multiple solvent parameters and charge transfer index was analyzed by multi-factor multi-variate partial least squares regression (PLSR). The charge transfer of the molecule is visualized by the analysis of the excited state wave function. Hydrogen bond basicity and surface tension can significantly affect charge transfer by studying the solvation model parameters and charge transfer index. Finally, a method in which a solvent regulates charge transfer strength and migration length is proposed.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#12

 

View it
Name
Description Encapsulated bioactive agents applied to the Lactuca sativa L. present an innovative approach to stimulate the production of plant secondary metabolites increasing its nutritive value. Calcium and copper ions were encapsulated in biopolymeric microparticles (microspheres and microcapsules) either as single agents or in combination with biocontrol agents, Trichoderma viride spores, a fungal plant growth mediator. Both, calcium and copper ions are directly involved in the synthesis of plant secondary metabolites and alongside, Trichoderma viride can provide indirect stimulation and higher uptake of nutrients. All treatments with microparticles had a positive effect on the enhancement of plant secondary metabolites content in Lactuca sativa L. The highest increase of chlorophylls, antioxidant activity and phenolic was obtained by calcium-based microparticles in both, conventionally and hydroponically grown lettuces. Non-encapsulated fungus Trichoderma viride enhanced the synthesis of plant secondary metabolites only in hydroponics cultivation signifying the importance of its encapsulation. Encapsulation proved to be simple, sustainable and environmentally favorable for the production of lettuce with increased nutritional quality, which is lettuce fortified with important bioactive compounds.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#13

 

View it
Name
Description Corpora lutea (CL) are transient endocrine glands supporting pregnancy by progesterone production. They develop at the site of ovulation from the remaining follicle, are highly metabolically active and undergo distinct, transformative processes during their lifetime. In contrast to other species, CL of lynxes do not regress at the end of cycle, but remain functionally active (persist) for years. Reactive oxygen species (ROS) and anti-oxidative enzymes are described to be important for the functionality of CL. We examined ten anti-oxidative enzymes in fresh and persistent CL of lynxes as well as in domestic cat CL of different luteal stages. The gene expression profiles, especially those of SOD1 and SOD2, showed some remarkable differences between CL stages during non-pregnant and pregnant cycles of domestic cats and between fresh and persistent CL of lynxes. Lynx gene expression profiles of SODs were confirmed by western blot analysis, immunohistochemistry and activity assays. SOD2 was characterized by a conspicuous high expression and enzyme activity exclusively in persistent CL. We suggest that SOD2 is required to detoxify potential elevated superoxide anion levels by producing H2O2 in the physiologically persistent CL. This product might also act as a signaling molecule, securing the CL from apoptosis and insuring long-term luteal cell survival.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#14

 

View it
Name
Description The response of biological communities to human disturbances depends on factors acting at local and regional scale and on the interaction between them. We compared the response of native forest dung beetle communities to cattle grazing under regional contexts differing on precipitation patterns (Atlantic forest and humid and dry Chaco). Through multivariate and GLMM analyses we contrasted richness and composition across regions and land uses and explored the role of local and regional variables accounting for those changes. We captured a total of 44101 individuals of 109 species. The interaction between local and regional variables influenced the response to livestock management. In the two wet regions (humid Chaco and Atlantic forest) diversity was similar in the native forest regardless of cattle presence but differs strongly in open pastures. In contrast, in the dry Chaco, differences between native forest and land use were not evident. Vegetation structure was a major determinant of species richness, whereas regional climate determined differences in species composition. We concluded that the response of dung beetles to livestock management cannot be generalized for all biomes. In dry ecosystems, dung beetles are probably pre-adapted to environmental conditions imposed by cattle ranching whereas in wet ecosystems the impact of cattle ranching is more significant.

#Theoretical sciences
Field # Theoretical sciences
Updated 28 February 2020

#15

 

View it
Name
Description Most studies on ungulate reproduction have focused on the covariates of male reproductive success, while there is much less information on female tactics of mate choice. The aim of this work is to fill this gap and to assess condition-dependent variations in female tactics in a lekking fallow deer (Dama dama) population. In particular, we investigated three indirect selection mechanisms: i) aggregation: when females join an already formed female group; ii) copying: when females copy the mate choice of other females and iii) territory choice: when females select a territory where many copulations had previously occurred. Our results show that female fallow deer, which are less experienced (younger) and/or incur higher travel costs (home range far from the lek), adopt indirect forms of mate selection more often than older females or females residing near the lek, respectively. Compared to adults, younger females remained longer in the lek (almost three times) and in male territories, returning to the lek after copulation. However, despite the time spent at the lek, younger females were not able to select the highest-rank males, and relied on territory choice more often than older females. Farther does visited the lek less frequently (farthest females only once) and arrived on average 5 days later than closer females (which performed up to 7 visits), but they were seen more often within female groups (aggregation). We did not find a different amount of copying in younger or in farther females. Our results contribute to advance our understanding of female behaviours in ungulate leks.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#16

 

View it
Name
Description We discuss the design of the thermal analog of logic gates in systems made of a collection of nanoparticles. We demonstrate the possibility to perform NOT, OR, NOR, AND and NAND logical operations at submicrometric scale by controlling the near-field radiative heat exchanges between their components. We also address the important point of the role played by the inherent non-additivity of radiative heat transfer in the combination of logic gates. These results pave the way to the development of compact thermal circuits for information processing and thermal management.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#17

 

View it
Name
Description This study presents the removal of phosphate from aqueous solution using a new silver nanoparticles-loaded tea activated carbon (AgNPs-TAC) material. In order to reduce costs, the tea activated carbon was produced from tea residue. Batch adsorption experiments were conducted to evaluate the effects of impregnation ratio of AgNPs and TAC, pH solution, contact time, initial phosphate concentration and dose of AgNPs-AC on removing phosphate from aqueous solution. Results show that the best conditions for phosphate adsorption occurred at the impregnation ratio AgNPs/TAC of 3% w/w, pH 3, and contact time lasting 150 min. The maximum adsorption capacity of phosphate on AgNPs-TAC determined by the Langmuir model was 13.62 mg/g at an initial phosphate concentration of 30 mg/L. The adsorption isotherm of phosphate on AgNPs-TAC fits well with both the Langmuir and Sips models. The adsorption kinetics data were also described well by the pseudo-first-order and pseudo-second-order models with high correlation coefficients of 0.978 and 0.966, respectively. The adsorption process was controlled by chemisorption through complexes and ligand exchange mechanisms. This study suggests that AgNPs-TAC is a promising, low cost adsorbent for phosphate removal from aqueous solution.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#18

 

View it
Name
Description Seawater is more than just salt water. The ocean is a veritable soup of chemicals. Part of that broth comes from dissolved carbon compounds, which account for a significant store of global carbon, on par with the amount held in the atmosphere. Researchers are actively working to classify what for

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#19

 

View it
Name
Description Biofluorescence is the absorption of electromagnetic radiation (light) at one wavelength followed by its reemission at a lower energy and longer wavelength by a living organism. Previous studies have documented the widespread presence of biofluorescence in some animals, including cnidarians, arthropods, and cartilaginous and ray-finned fishes. Many studies on biofluorescence have focused on marine animals (cnidarians, cartilaginous and ray-finned fishes) but we know comparatively little about the presence of biofluorescence in tetrapods. We show for the first time that biofluorescence is widespread across Amphibia, with a focus on salamanders (Caudata), which are a diverse group with a primarily Holarctic distribution. We find that biofluorescence is not restricted to any particular family of salamanders, there is striking variation in their fluorescent patterning, and the primary wavelengths emitted in response to blue excitation light are within the spectrum of green light. Widespread biofluorescence across the amphibian radiation is a previously undocumented phenomenon that could have significant ramifications for the ecology and evolution of these diverse and declining vertebrates. Our results provide a roadmap for future studies on the characterization of molecular mechanisms of biofluorescence in amphibians, as well as directions for investigations into the potential impact of biofluorescence on the visual ecology and behavior of biofluorescent amphibians.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#20

 

View it
Name
Description Forced solar gazing (FSG) appears to be more regularly employed as a method of torture in certain parts of the world than has previously been documented. This study is a retrospective analysis of a case set of 17 torture survivors subjected to FSG, who were seen by the UK Charity Freedom from Torture in the period 2009–2019. All clients in our case set had experienced serious physical and sexual assaults, in addition to the FSG, as part of their mistreatment. All clients suffered with serious psychological conditions as a result of their torture, including depression and post-traumatic stress disorder (PTSD). These mental health conditions made ophthalmic assessment difficult, not simply because of the clients’ associated anxiety, but also because of avoidant behaviour and dissociation which was manifested in the clinical setting. In the two clients who could be examined by an ophthalmologist, both had visible retinal changes and a degree of impairment of visual acuity. FSG appears to be a method of torture which is regularly employed, and in our case set is seen with other serious manifestations of mistreatment, both physical, psychological and sexual. Psychiatric comorbidities present challenges in the clinical assessment of these cases. Ophthalmic examination can carry a risk of re-traumatisation of individuals who have experienced FSG in a context of torture.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#21

 

View it
Name
Description Neuronal excitability is classified as type I, II, or III, according to the responses of electronic activities, which play different roles. In the present paper, the effect of an excitatory autapse on type III excitability is investigated and compared to type II excitability in the Morris-Lecar model, based on Hopf bifurcation and characteristics of the nullcline. The autaptic current of a fast-decay autapse produces periodic stimulations, and that of a slow-decay autapse highly resembles sustained stimulations. Thus, both fast- and slow-decay autapses can induce a resting state for type II excitability that changes to repetitive firing. However, for type III excitability, a fast-decay autapse can induce a resting state to change to repetitive firing, while a slow-decay autapse can induce a resting state to change to a resting state following a transient spike instead of repetitive spiking, which shows the abnormal phenomenon that a stronger excitatory effect of a slow-decay autapse just induces weaker responses. Our results uncover a novel paradoxical phenomenon of the excitatory effect, and we present potential functions of fast- and slow-decay autapses that are helpful for the alteration and maintenance of type III excitability in the real nervous system related to neuropathic pain or sound localization.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#22

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#23

 

View it
Name
Description This study aimed to clarify how masticatory muscle atrophy induced by botulinum toxin (BTX) injection affects cortical bone quality of the mandible using 3D modeling technology. A total of 39 young (26.9 ± 6.0 years) and 38 post-menopausal (55.3 ± 6.3 years) females were included. Computed tomography (CT) images were obtained before and after 12 months of treatment. Predictor variables were application of a stabilization splint, and/or two times of BTX injection in the bilateral temporalis and masseter muscles within a six-month interval. Outcome variables were changes in average Hounsfield units (HU) and cortical thickness of region of interest (ROI). 3D mandibular models were reconstructed using CT images, and models were used to calculate average HU and cortical thickness of ROIs, including inferior half of the lateral surface of ascending ramus, coronoid process, and temporomandibular joint condyle. Cortical bone quality at muscle insertion site was influenced by decreased muscle thickness but seemed not to be affected by decreased functional loading. Reduced functional loading seemed to influence cortical bone quality of the condyles. These effects were more remarkable in post-menopausal females. Hence, decreased masticatory muscle thickness may lead to alterations of the mandibular cortical structures, especially in post-menopausal females.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#24

 

View it
Name
Description Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#25

 

View it
Name
Description Periphyton (viz. algal) growth in many freshwater systems is associated with severe eutrophication that can impair productive and recreational use of water by billions of people. However, there has been limited analysis of periphyton growth at a global level. To predict where nutrient over-enrichment and undesirable periphyton growth occurs, we combined several databases to model and map global dissolved and total nitrogen (N) and phosphorus (P) concentrations, climatic and catchment characteristics for up to 1406 larger rivers that were analysed between 1990 and 2016. We predict that 31% of the global landmass contained catchments may exhibit undesirable levels of periphyton growth. Almost three-quarters (76%) of undesirable periphyton growth was caused by P-enrichment and mapped to catchments dominated by agricultural land in North and South America and Europe containing 1.7B people. In contrast, undesirable periphyton growth due to N-enrichment was mapped to parts of North Africa and parts of the Middle East and India affecting 280 M people. The findings of this global modelling approach can be used by landowners and policy makers to better target investment and actions at finer spatial scales to remediate poor water quality owing to periphyton growth.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#26

 

View it
Name
Description In this paper, analytical pyrolyzer coupled with a gas chromatography–mass spectrometry set-up (Py-GC/MS) and density functional theory(DFT) theory was used to reveal the initial pyrolysis mechanism and product formation mechanism of cellulose pyrolysis. We demonstrated an experimentally benchmarked molecular simulation approach that delineates pyrolysis process of cellulose. Experimental results indicated that the cellulose pyrolysis products mostly incorporate levoglucosan (LG), glycolaldehyde (HAA), 5-hydroxyfurfural (5-HMF), and the like. The constituents of fast pyrolysis products of cellulose and cellobiose demonstrated the identical trend, although the contents of certain products are different. Laying the foundation of experimental analysis, the reaction pathways of four categories of cellulose pyrolysis were outlined using DFT theory; the pathways are those of generating LG, HAA, and 5-HMF and the dehydration reaction in the process of cellulose pyrolysis. Also, by comparing the energy barriers of various reactions, the optimal pathway of different reactions were summarized. The deduced cellulose pyrolysis reaction pathway opened up new ideas for studying the pyrolysis behavior of cellulose.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#27

 

View it
Name
Description Among all the malaria parasites, P. falciparum is the most predominant species which has developed drug resistance against most of the commercial anti-malarial drugs. Thus, finding a new molecule for the inhibition of enzymes of P. falciparum is the pharmacological challenge in present era. Herein, ten novel molecules have been designed with an amalgamation of cinchonidine, carbohydrate moiety and triazole ring by utilizing copper-catalyzed click reaction of cinchonidine-derived azide and clickable glycosyl alkynes. The molecular docking of developed molecules showed promising results for plasmepsin inhibition in the form of effective binding with target proteins.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#28

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#29

 

View it
Name
Description The combination of high-order harmonic polarimetry and sub-cycle control of electronic trajectories gives insight into the birth of attosecond electronic wave packets in molecules.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#30

 

View it
Name
Description Carbon-dot-based light-emitting diodes with narrowband efficient emission in the deep blue are an attractive candidate for future high-colour-purity flat-panel display and lighting applications.

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#31

 

View it
Name
Description Does the popularity of a recent online photonics conference signify a growing appetite for a change in scientific interaction?

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#32

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 27 February 2020

#33

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#34

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#35

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#36

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#37

 

View it
Name
Description Hepatitis C virus (HCV) is the main cause of chronic hepatitis and probably liver cirrhosis. Dasabuvir (DSV) is a direct-acting antiviral agent with efficiency in managing HCV. The anti-viral activity of the anti-estrogen drug tamoxifen (TAM) suggested the synergistic effect of DSV and TAM for blocking the replication of HCV. However, being substrates and inhibitors of efflux transporters (TAM inhibits P-gp, DSV inhibits P-gp and BCRP), there is a possibility for a pharmacokinetic (PK) drug-drug interaction. In this work, a new UPLC-MS/MS method was developed and validated for the simultaneous determination of TAM, its active metabolite 4-hydroxy tamoxifen (TOH), and DSV in rat plasma. The method was applied to investigate the PK interaction between DSV and TAM/TOH following the co-administration of DSV and TAM to Wistar rats. Chromatographic analysis was performed on Waters BEHTM C18 column using a mobile phase of acetonitrile/water containing 0.1% formic acid (80: 20, v/v). The method allowed the determination of concentration ranges 20–1000, 0.1–500, 0.5–500 ng/mL for DSV, TAM, and TOH, respectively. Unexpectedly, results revealed the absence of PK interactions between DSV and TAM/TOH, compared with their single administration, suggesting the safety of co-administering DSV/TAM as an anti-viral combination without the need of dosage adjustment.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#38

 

View it
Name
Description MitoBlue is a fluorescent bisamidine that can be used to easily monitor the changes in mitochondrial degradation processes in different cells and cellular conditions. MitoBlue staining pattern is exceptional among mitochondrial dyes and recombinant fluorescent probes, allowing the dynamic study of mitochondrial recycling in a variety of situations in living cells. MitoBlue is a unique tool for the study of these processes that will allow the detailed characterization of communication between mitochondria and lysosomes.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#39

 

View it
Name
Description In the past decade, treatments for tumors have made remarkable progress, such as the successful clinical application of targeted therapies. Nowadays, targeted therapies are based primarily on the detection of mutations, and next-generation sequencing (NGS) plays an important role in relevant clinical research. The mutation frequency is a major problem in tumor mutation detection and increasing sequencing depth is a widely used method to improve mutation calling performance. Therefore, it is necessary to evaluate the effect of different sequencing depth and mutation frequency as well as mutation calling tools. In this study, Strelka2 and Mutect2 tools were used in detecting the performance of 30 combinations of sequencing depth and mutation frequency. Results showed that the precision rate kept greater than 95% in most of the samples. Generally, for higher mutation frequency (≥20%), sequencing depth ≥200X is sufficient for calling 95% mutations; for lower mutation frequency (≤10%), we recommend improving experimental method rather than increasing sequencing depth. Besides, according to our results, although Strelka2 and Mutect2 performed similarly, the former performed slightly better than the latter one at higher mutation frequency (≥20%), while Mutect2 performed better when the mutation frequency was lower than 10%. Besides, Strelka2 was 17 to 22 times faster than Mutect2 on average. Our research will provide a useful and comprehensive guideline for clinical genomic researches on somatic mutation identification through systematic performance comparison among different sequencing depths and mutation frequency.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#40

 

View it
Name
Description Two novel core-shell structured SiO2@AIPA-S-Si-Eu and SiO2@AIPA-S-Si-Eu-phen nanocomposites have been synthesized by a bifunctional organic ligands ((HOOC)2C6H3NHCONH(CH2)3Si(OCH2CH3)3) (defined as AIPA-S-Si) connected with Eu3+ ions and silica via covalent bond. And the corresponding core-shell-shell structured SiO2@AIPA-S-Si-Eu@SiO2 and SiO2@AIPA-S-Si-Eu-phen@SiO2 nanocomposites with enhanced luminescence have been synthesized by tetraethyl orthosilicate (TEOS) hydrolysis co-deposition method. The composition and micromorphology of the nanocomposites were characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized core-shell and core-shell-shell structured nanocomposites have excellent luminescence intensity and long lifetime. The nanocomposites show bright red light under ultraviolet lamp. However, the core-shell-shell structured nanocomposites have stronger luminescence intensity than the corresponding core-shell structured nanocomposites. Meanwhile, the core-shell-shell structured nanocomposites still exhibit good luminescence stability in aqueous solution. In addition, a large number of Si-OH on the surface of the core-shell-shell structured nanocomposites can be attached to many biomacromolecules. Therefore, they have potential applications in the fields of biology and luminescence.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#41

 

View it
Name
Description Mice are the most commonly used laboratory animals for studying diseases, behaviour, and pharmacology. Behavioural experiment battery aids in evaluating abnormal behaviour in mice. During behavioural experiments, mice frequently experience human contact. However, the effects of repeated handling on mice behaviour remains unclear. To minimise mice stress, methods of moving mice using transparent tunnels or cups have been recommended but are impractical in behavioural tests. To investigate these effects, we used a behavioural test battery to assess differences between mice accustomed to the experimenter’s handling versus control mice. Repeatedly handled mice gained slightly more weight than control mice. In behavioural tests, repeatedly handled mice showed improved spatial cognition in the Y-maze test and reduced anxiety-like behaviour in the elevated plus-maze test. However, there was no change in anxiety-like behaviour in the light/dark transition test or open-field test. Grip strength, rotarod, sociability, tail suspension, Porsolt forced swim, and passive avoidance tests revealed no significant differences between repeatedly handled and control mice. Our findings demonstrated that mice repeatedly handled by the experimenter before behavioural tests showed reduced anxiety about high altitudes and improved spatial cognition, suggesting that repeated contact can affect the results of some behavioural tests.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#42

 

View it
Name
Description Glycosaminoglycans (GAGs) are polysaccharides produced by most mammalian cells and involved in a variety of biological processes. However, due to the size and complexity of GAGs, detailed knowledge about the structure and expression of GAGs by cells, the glycosaminoglycome, is lacking. Here we report a straightforward and versatile approach for structural domain mapping of complex mixtures of GAGs, GAGDoMa. The approach is based on orthogonal enzymatic depolymerization of the GAGs to generate internal, terminating, and initiating domains, and nanoflow reversed-phase ion-pairing chromatography with negative mode higher-energy collision dissociation (HCD) tandem mass spectrometry (MS/MS) for structural characterization of the individual domains. GAGDoMa provides a detailed structural insight into the glycosaminoglycome, and offers an important tool for deciphering the complexity of GAGs in cellular physiology and pathology.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#43

 

View it
Name
Description Heterochromatin is essential for regulating global gene transcription and protecting genome stability, and may play a role in tumor suppression. Drugs promoting heterochromatin are potential cancer therapeutics but very few are known. In order to identify drugs that can promote heterochromatin, we used a cell-based method and screened NCI drug libraries consisting of oncology drugs and natural compounds. Since heterochromatin is originally defined as intensely stained chromatin in the nucleus, we estimated heterochromatin contents of cells treated with different drugs by quantifying the fluorescence intensity of nuclei stained with Hoechst DNA dye. We used HeLa cells and screened 231 FDA-approved oncology and natural substance drugs included in two NCI drug libraries representing a variety of chemical structures. Among these drugs, streptonigrin most prominently caused an increase in Hoechst-stained nuclear fluorescence intensity. We further show that streptonigrin treated cells exhibit compacted DNA foci in the nucleus that co-localize with Heterochromatin Protein 1 alpha (HP1α), and exhibit an increase in total levels of the heterochromatin mark, H3K9me3. Interestingly, we found that streptonigrin promotes heterochromatin at a concentration as low as one nanomolar, and at this concentration there were no detectable effects on cell proliferation or viability. Finally, in line with a previous report, we found that streptonigrin inhibits STAT3 phosphorylation, raising the possibility that non-canonical STAT function may contribute to the effects of streptonigrin on heterochromatin. These results suggest that, at low concentrations, streptonigrin may primarily enhance heterochromatin formation with little toxic effects on cells, and therefore might be a good candidate for epigenetic cancer therapy.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#44

 

View it
Name
Description Surface incident solar radiation (Rs) of reanalysis products is widely used in ecological conservation, agricultural production, civil engineering and various solar energy applications. It is of great importance to have a good knowledge of the uncertainty of reanalysis Rs products. In this study, we evaluated the Rs estimates from two representative global reanalysis (ERA-Interim and MERRA-2) using quality- controlled surface measurements from China Meteorological Administration (CMA) and Multi-layer Simulation and Data Assimilation Center of the Tibetan Plateau (DAM) from 2000 to 2009. Error causes are further analyzed in combination radiation products from the Earth’s Radiant Energy System (CERES) EBAF through time series estimation, hotspot selection and Geodetector methods. Both the ERA-Interim and MERRA-2 products overestimate the Rs in China, and the MERRA-2 overestimation is more pronounced. The errors of the ERA-Interim are greater in spring and winter, while that of the MERRA-2 are almost the same in all seasons. As more quality-controlled measurements were used for validation, the conclusions seem more reliable, thereby providing scientific reference for rational use of these datasets. It was also found that the main causes of errors are the cloud coverage in the southeast coastal area, aerosol optical depth (AOD) and water vapor content in the Sichuan Basin, and cloud coverage and AOD in the northeast and middle east of China.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#45

 

View it
Name
Description A number of scientific reports published to date contain data on endogenous levels of various phytohormones in potato (Solanum tuberosum L.) but a complete cytokinin profile of potato tissues, that would include data on all particular molecular forms of cytokinin, has still been missing. In this work, endogenous levels of all analytically detectable isoprenoid cytokinins, as well as the auxin indole-3-acetic acid (IAA), and abscisic acid (ABA) have been determined in shoots and roots of 30 day old in vitro grown potato (cv. Désirée). The results presented here are generally similar to other data reported for in vitro grown potato plants, whereas greenhouse-grown plants typically contain lower levels of ABA, possibly indicating that in vitro grown potato is exposed to chronic stress. Cytokinin N-glucosides, particularly N7-glucosides, are the dominant cytokinin forms in both shoots and roots of potato, whereas nucleobases, as the bioactive forms of cytokinins, comprise a low proportion of cytokinin levels in tissues of potato. Differences in phytohormone composition between shoots and roots of potato suggest specific patterns of transport and/or differences in tissue-specific metabolism of plant hormones. These results represent a contribution to understanding the hormonomics of potato, a crop species of extraordinary economic importance.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#46

 

View it
Name
Description In this report, synthesis of the starch nanoparticles from underutilized and cheap sources viz: Horse chestnut (HS), Water chestnut (WS) and Lotus stem (LS) by using mild alkali hydrolysis and ultra-sonication process has been presented. The particles were characterized by Differential scanning colorimeter (DSC), X-Ray Diffraction (XRD), Rheology, Scanning electron microscopy (SEM) and Fourier transform infra-spectroscopy (ATR-FTIR). The particle size measurements, functional properties and antioxidant potential of starch nanoparticles were also analyzed. The experimental results revealed that the average particle size diameter of Horse chestnut starch nanoparticles (HSP), Water chestnut starch nanoparticles (WSP) and Lotus stem starch nanoparticles (LSP) was found to be 420, 606 and 535 nm, respectively. We observed a notable increase in the water absorption capacity but decreased capacity for oil absorption in the starch nano-particles. SEM images revealed damaged starch granules after size reduction. Additionally, loss of crystallinity and molecular order was observed from XRD and ATR-FTIR spectra. It was concluded that the starch nanoparticles have better thermal stability, increased viscosity and antioxidant properties.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#47

 

View it
Name
Description Reliable approaches to identify stem cell mechanisms that mediate aggressive cancer could have great therapeutic value, based on the growing evidence of embryonic signatures in metastatic cancers. However, how to best identify and target stem-like mechanisms aberrantly acquired by cancer cells has been challenging. We harnessed the power of reprogramming to examine GRP78, a chaperone protein generally restricted to the endoplasmic reticulum in normal tissues, but which is expressed on the cell surface of human embryonic stem cells and many cancer types. We have discovered that (1) cell surface GRP78 (sGRP78) is expressed on iPSCs and is important in reprogramming, (2) sGRP78 promotes cellular functions in both pluripotent and breast cancer cells (3) overexpression of GRP78 in breast cancer cells leads to an induction of a CD24−/CD44+ tumor initiating cell (TIC) population (4) sGRP78+ breast cancer cells are enriched for stemness genes and appear to be a subset of TICs (5) sGRP78+ breast cancer cells show an enhanced ability to seed metastatic organ sites in vivo. These collective findings show that GRP78 has important functions in regulating both pluripotency and oncogenesis, and suggest that sGRP78 marks a stem-like population in breast cancer cells that has increased metastatic potential in vivo.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#48

 

View it
Name
Description The bronze bug, Thaumastocoris peregrinus, an Australian native insect, has become a nearly worldwide invasive pest in the last 16 years and has been causing significant damage to eucalypts (Myrtaceae), including Eucalyptus spp. and Corymbia spp. Its rapid expansion leads to new questions about pathways and routes that T. peregrinus used to invade other continents and countries. We used mtDNA to characterize specimens of T. peregrinus collected from 10 countries where this species has become established, including six recently invaded countries: Chile, Israel, Mexico, Paraguay, Portugal, and the United States of America. We then combined our mtDNA data with previous data available from South Africa, Australia, and Europe to construct a world mtDNA network of haplotypes. Haplotype A was the most common present in all specimens of sites sampled in the New World, Europe, and Israel, however from Australia second more frequently. Haplotype D was the most common one from native populations in Australia. Haplotype A differs from the two major haplotypes found in South Africa (D and G), confirming that at least two independent invasions occurred, one from Australia to South Africa, and the other one from Australia to South America (A). In conclusion, Haplotype A has an invasion success over many countries in the World. Additionally, analyzing data from our work and previous reports, it is possible to suggest some invasive routes of T. peregrinus to predict such events and support preventive control measures.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#49

 

View it
Name
Description Metal-organic frameworks (MOFs) are intriguing host materials in composite electrolytes due to their ability for tailoring host-guest interactions by chemical tuning of the MOF backbone. Here, we introduce particularly high sodium ion conductivity into the zeolitic imidazolate framework ZIF-8 by impregnation with the sodium-salt-containing ionic liquid (IL) (Na0.1EMIM0.9)TFSI. We demonstrate an ionic conductivity exceeding 2 × 10−4 S · cm−1 at room temperature, with an activation energy as low as 0.26 eV, i.e., the highest reported performance for room temperature Na+-related ion conduction in MOF-based composite electrolytes to date. Partial amorphization of the ZIF-backbone by ball-milling results in significant enhancement of the composite stability towards exposure to ambient conditions, up to 20 days. While the introduction of network disorder decelerates IL exudation and interactions with ambient contaminants, the ion conductivity is only marginally affected, decreasing with decreasing crystallinity but still maintaining superionic behavior. This highlights the general importance of 3D networks of interconnected pores for efficient ion conduction in MOF/IL blends, whereas pore symmetry is a less stringent condition.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#50

 

View it
Name
Description The rescattering of backward stimulated Raman scattering (BSRS) by stimulated Brillouin scattering (SBS) is found in the high electron density region by relativistic Vlasov-Maxwell simulation and particle-in-cell (PIC) simulation, where the BSRS is in the regime of absolute instability and dominates in all the scatterings. Both one dimension (1D) Vlasov simulation and two dimension (2D) PIC simulation have been given to verify that there exists SBS of BSRS in the regime of absolute instability for BSRS. The SBS of BSRS will be even stronger than forward stimulated Raman scattering (FSRS) and SBS in regime of absolute instability for BSRS. Thus, besides Langmuir decay instability and laser energy absorption, the SBS of BSRS is also an important saturation mechanism of BSRS in high electron density region.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#51

 

View it
Name
Description Resistance to antibiotics is a hot topic in microbiology, but there is much less coverage on resistance to vaccines. The associated risk to disease control has potentially devastating implications, but advances are being made towards smarter vaccine design that reduces the risk of antibiotic-resistant disease.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#52

 

View it
Name
Description Misfolded proteins in the endoplasmic reticulum (ER) are returned to the cytosol and destroyed by a process known as ER-associated degradation (ERAD). Hrd1 has been implicated as the channel that mediates the transport of ERAD substrates to the cytosol. A study demonstrates that Hrd1 is gated by autoubiquitination and a soluble ERAD substrate.

#Theoretical sciences
Field # Theoretical sciences
Updated 26 February 2020

#53

 

View it
Name
Description The Dongting Lake Basin and the Poyang Lake Basin, both located in the middle reaches of the Yangtze River, provide 30% of the total water volume for the Yangtze River. Under global climate change, precipitation patterns have undergone varying degrees of changes in different regions. Analysing temporal and spatial rainfall variations is important for understanding the variations in capacity of the two lake basins and the water intake variations by the Yangtze River. This study analyses the temporal and spatial variations of the two basins based on 33 rain-gauge data series from 1960–2015, using statistical methods, GIS spatial analysis and the M-K trend test. Our results showed that the annual precipitation generally increased in the Poyang Lake Basin and we found no obvious changes in the Dongting Lake Basin from 1960 to 2015. Seasonal precipitation levels at interannual scales were roughly consistent, but exhibited variability larger by an order of magnitude in the Poyang Lake Basin than in the Dongting Lake Basin. In general, an increasing trend dominated in spring and autumn while a decreasing trend was observed in summer and winter. The increasing trend was significant from the 1990s in the Poyang Lake Basin and from the late 1990s in the Dongting Lake Basin. It was found that annual precipitation with relatively larger anomalies appeared in ENSO (El Niño and Southern Oscillation) years in most cases, such as in 1963, 1997/1998 and 2002, while a few anomalies appeared in the previous or next year around an ENSO year, such as 1971 and 1978. All monthly precipitation periods with relatively larger or smaller anomalies coincided with ENSO events. In addition, El Niño and SOI (Southern Oscillation) events had significant relationships with negative monthly precipitation anomalies. El Niño and the SOI exerted more significant impacts on the Poyang Lake Basin than on the Dongting Lake Basin, which explains the conclusions regarding seasonal precipitation trends as mentioned above.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#54

 

View it
Name
Description The study was conducted to evaluate the cardio-protective activity of combination (COMB) of syringic acid (SA) and resveratrol (RV) against isoproterenol (ISO) induced cardio-toxicity in rats. Rats were pre-treated orally with SA (50 mg/kg), RV (50 mg/kg) and combination of SA (25 mg/kg) and RV (25 mg/kg) along with positive control gallic acid (50 mg/kg) for 30 days. The effects of ISO on cardiac markers, lipid profile and lipid peroxidation marker, anti-oxidant enzymes and m-RNA expression of nuclear factor-kappa B (NF-kB) and tumor necrosis factor-α (TNF-α) were observed along with histopathological observations of simple and transmission electron microscopes (TEM). Serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and alkaline phosphatase were significantly increased while cardiac tissue CK-MB, LDH, superoxide dismutase and catalase were significantly decreased in ISO administered rats, which also exhibited a significant increase in total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol and thiobarbutyric acid reactive substances and significant decrease in high density lipoprotein cholesterol in serum and heart. The m-RNA levels of inflammatory markers NF-kB and TNF-α were significantly increased in ISO treated rats. COMB Pre-treatment significantly reversed the ISO actions. Histopathological studies of simple and TEM were also co-related with the above biochemical parameters. Docking studies with NF-kB were also performed. Evidence has shown for the first time in this approach that COMB pre-treatment ameliorated ISO induced cardio-toxicity in rats and revealed cardio-protection.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#55

 

View it
Name
Description The study was conducted to evaluate the cardio-protective activity of combination (COMB) of syringic acid (SA) and resveratrol (RV) against isoproterenol (ISO) induced cardio-toxicity in rats. Rats were pre-treated orally with SA (50 mg/kg), RV (50 mg/kg) and combination of SA (25 mg/kg) and RV (25 mg/kg) along with positive control gallic acid (50 mg/kg) for 30 days. The effects of ISO on cardiac markers, lipid profile and lipid peroxidation marker, anti-oxidant enzymes and m-RNA expression of nuclear factor-kappa B (NF-kB) and tumor necrosis factor-α (TNF-α) were observed along with histopathological observations of simple and transmission electron microscopes (TEM). Serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and alkaline phosphatase were significantly increased while cardiac tissue CK-MB, LDH, superoxide dismutase and catalase were significantly decreased in ISO administered rats, which also exhibited a significant increase in total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol and thiobarbutyric acid reactive substances and significant decrease in high density lipoprotein cholesterol in serum and heart. The m-RNA levels of inflammatory markers NF-kB and TNF-α were significantly increased in ISO treated rats. COMB Pre-treatment significantly reversed the ISO actions. Histopathological studies of simple and TEM were also co-related with the above biochemical parameters. Docking studies with NF-kB were also performed. Evidence has shown for the first time in this approach that COMB pre-treatment ameliorated ISO induced cardio-toxicity in rats and revealed cardio-protection.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#56

 

View it
Name
Description Halophiles utilize two distinct osmoprotection strategies. The accumulation of organic compatible solutes such as glycine betaine does not perturb the functioning of cytoplasmic components, but represents a large investment of energy and carbon. KCl is an energetically attractive alternative osmoprotectant, but requires genome-wide modifications to establish a highly acidic proteome. Most extreme halophiles are optimized for the use of one of these two strategies. Here we examine the extremely halophilic Proteobacterium Halorhodospira halophila and report that medium K+ concentration dramatically alters its osmoprotectant use. When grown in hypersaline media containing substantial K+ concentrations, H. halophila accumulates molar concentrations of KCl. However, at limiting K+ concentrations the organism switches to glycine betaine as its major osmoprotectant. In contrast, the closely related organism Halorhodospira halochloris is limited to using compatible solutes. H. halophila performs both de novo synthesis and uptake of glycine betaine, matching the biosynthesis and transport systems encoded in its genome. The medium K+ concentration (~10 mM) at which the KCl to glycine betaine osmoprotectant switch in H. halophila occurs is near the K+ content of the lake from which it was isolated, supporting an ecological relevance of this osmoprotectant strategy.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#57

 

View it
Name
Description Like bacteria, T cells are reported to communicate with each other and adapt their behaviour according to cell density. This quorum regulation supports T cell population expansion and contraction in response to infection.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#58

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#59

 

View it
Name
Description

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#60

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#61

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#62

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#63

 

View it
Name
Description Watch Japan’s Next Neutrino Hunter Could Revolutionize Particle Physics, an Earth video from Seeker.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#64

 

View it
Name
Description Optic neuropathy is a major cause of irreversible blindness worldwide, and no effective treatment is currently available. Secondary degeneration is believed to be the major contributor to retinal ganglion cell (RGC) death, the endpoint of optic neuropathy. Partial optic nerve transection (pONT) is an established model of optic neuropathy. Although the mechanisms of primary and secondary degeneration have been delineated in this model, until now how this is influenced by therapy is not well-understood. In this article, we describe a clinically translatable topical, neuroprotective treatment (recombinant human nerve growth factor, rh-NGF) predominantly targeting secondary degeneration in a pONT rat model. Topical application of rh-NGF twice daily for 3 weeks significantly improves RGC survival as shown by reduced RGC apoptosis in vivo and increased RGC population in the inferior retina, which is predominantly affected in this model by secondary degeneration. Topical rh-NGF also promotes greater axonal survival and inhibits astrocyte activity in the optic nerve. Collectively, these results suggest that topical rh-NGF exhibits neuroprotective effects on retinal neurons via influencing secondary degeneration process. As topical rh-NGF is already involved in early clinical trials, this highlights its potential in multiple indications in patients, including those affected by glaucomatous optic neuropathy.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#65

 

View it
Name
Description Optic neuropathy is a major cause of irreversible blindness worldwide, and no effective treatment is currently available. Secondary degeneration is believed to be the major contributor to retinal ganglion cell (RGC) death, the endpoint of optic neuropathy. Partial optic nerve transection (pONT) is an established model of optic neuropathy. Although the mechanisms of primary and secondary degeneration have been delineated in this model, until now how this is influenced by therapy is not well-understood. In this article, we describe a clinically translatable topical, neuroprotective treatment (recombinant human nerve growth factor, rh-NGF) predominantly targeting secondary degeneration in a pONT rat model. Topical application of rh-NGF twice daily for 3 weeks significantly improves RGC survival as shown by reduced RGC apoptosis in vivo and increased RGC population in the inferior retina, which is predominantly affected in this model by secondary degeneration. Topical rh-NGF also promotes greater axonal survival and inhibits astrocyte activity in the optic nerve. Collectively, these results suggest that topical rh-NGF exhibits neuroprotective effects on retinal neurons via influencing secondary degeneration process. As topical rh-NGF is already involved in early clinical trials, this highlights its potential in multiple indications in patients, including those affected by glaucomatous optic neuropathy.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#66

 

View it
Name
Description Wood modification improves the properties of wood as a building material by altering the wood structure on a cellular level. This study investigated how dimensional changes of wood on a macroscopic scale are related to the cellular level chemical changes on the micron level after impregnation modification with melamine formaldehyde (MF) resin under different heat curing conditions. Our results showed that the curing conditions affected the polycondensation reactions and the morphological structure of the MF resin within the cell lumen. The diffusion of the resin into the cell wall was estimated based on the triazine ring vibration of melamine in the Raman spectrum at 950–990 cm−1. Thereby, it was shown that macroscopic changes in wood dimensions do not provide a reliable estimate for the cell wall diffusion of the resin. The removal of cell wall constituents during the modification, which was facilitated by the alkaline pH of the impregnation solution, counterbalanced the cell wall bulking effect of the resin. This was particularly evident for wet cured samples, where diffusion of MF resin into the cell wall was observed by confocal Raman microscopy, despite a reduction in macroscopic wood dimensions.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#67

 

View it
Name
Description Wood modification improves the properties of wood as a building material by altering the wood structure on a cellular level. This study investigated how dimensional changes of wood on a macroscopic scale are related to the cellular level chemical changes on the micron level after impregnation modification with melamine formaldehyde (MF) resin under different heat curing conditions. Our results showed that the curing conditions affected the polycondensation reactions and the morphological structure of the MF resin within the cell lumen. The diffusion of the resin into the cell wall was estimated based on the triazine ring vibration of melamine in the Raman spectrum at 950–990 cm−1. Thereby, it was shown that macroscopic changes in wood dimensions do not provide a reliable estimate for the cell wall diffusion of the resin. The removal of cell wall constituents during the modification, which was facilitated by the alkaline pH of the impregnation solution, counterbalanced the cell wall bulking effect of the resin. This was particularly evident for wet cured samples, where diffusion of MF resin into the cell wall was observed by confocal Raman microscopy, despite a reduction in macroscopic wood dimensions.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#68

 

View it
Name
Description Prevention for contrast-induced nephropathy (CIN) is limited by the lack of a single predictor. As activin A is upregulated in heart failure and chronic kidney disease, we aimed to clarify the association between activin A levels and renal outcomes after coronary angiography (CAG). This prospective observational study included 267 patients who received CAG between 2009 and 2015. CIN was defined as elevation of serum creatinine to >0.5 mg/dL or to >25% above baseline within 48 hours after CAG. During follow-up, laboratory parameters were measured every 3–6 months. Renal decline was defined as>2-fold increase in serum creatinine or initiation of dialysis. The patients were stratified into tertiles according to serum activin A levels at baseline. High activin A tertile was significantly associated more CIN and renal function decline compared to low activin A tertile (all p < 0.001). After adjusting potential confounding factors, high serum activin A tertiles was associated to CIN (Odds ratio 4.49, 95% CI 1.07–18.86, p = 0.040) and renal function decline (Hazard ratio 4.49, 95% CI 1.27–11.41, p = 0.017) after CAG.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#69

 

View it
Name
Description Polo-like kinases (Plks) are key cell cycle regulators. They contain a kinase domain followed by a polo-box domain that recognizes phosphorylated substrates and enhances their phosphorylation. The regulatory subunit of the Dbf4-dependent kinase complex interacts with the polo-box domain of Cdc5 (the sole Plk in Saccharomyces cerevisiae) in a phosphorylation-independent manner. We have solved the crystal structures of the polo-box domain of Cdc5 on its own and in the presence of peptides derived from Dbf4 and a canonical phosphorylated substrate. The structure bound to the Dbf4-peptide reveals an additional density on the surface opposite to the phospho-peptide binding site that allowed us to propose a model for the interaction. We found that the two peptides can bind simultaneously and non-competitively to the polo-box domain in solution. Furthermore, point mutations on the surface opposite to the phosphopeptide binding site of the polo-box domain disrupt the interaction with the Dbf4 peptide in solution and cause an early anaphase arrest phenotype distinct from the mitotic exit defect typically observed in cdc5 mutants. Collectively, our data illustrates the importance of non-canonical interactions mediated by the polo-box domain and provide key mechanistic insights into the combinatorial recognition of substrates by Polo-like kinases.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#70

 

View it
Name
Description This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#71

 

View it
Name
Description This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#72

 

View it
Name
Description Toxicity and transformation process of polycyclic aromatic hydrocarbons (PAHs) is strongly depended on the interaction between PAHs and dissolved organic matters (DOM). In this study, a 125W high-pressure mercury lamp was used to simulate the sunlight experiment to explore the inhibition mechanism of four dissolved organic matters (SRFA, LHA, ESHA, UMRN) on the degradation of anthracene and pyrene in water environment. Results indicated that the photodegradation was the main degradation approach of PAHs, which accorded with the first-order reaction kinetics equation. The extent of degradation of anthracene and pyrene was 36% and 24%, respectively. DOM influence mechanism on PAHs varies depending upon its source. SRFA, LHA and ESHA inhibit the photolysis of anthracene, however, except for SRFA, the other three DOM inhibit the photolysis of pyrene. Fluorescence quenching mechanism is the main inhibiting mechanism, and the binding ability of DOM and PAHs is dominantly correlated with its inhibiting effect. FTIR spectroscopies and UV–Visible were used to analyze the main structural changes of DOM binding PAHs. Generally, the stretching vibration of N–H and C–O of polysaccharide carboxylic acid was the key to affect its binding with anthracene and C–O–C in aliphatic ring participated in the complexation of DOM and pyrene.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#73

 

View it
Name
Description Toxicity and transformation process of polycyclic aromatic hydrocarbons (PAHs) is strongly depended on the interaction between PAHs and dissolved organic matters (DOM). In this study, a 125W high-pressure mercury lamp was used to simulate the sunlight experiment to explore the inhibition mechanism of four dissolved organic matters (SRFA, LHA, ESHA, UMRN) on the degradation of anthracene and pyrene in water environment. Results indicated that the photodegradation was the main degradation approach of PAHs, which accorded with the first-order reaction kinetics equation. The extent of degradation of anthracene and pyrene was 36% and 24%, respectively. DOM influence mechanism on PAHs varies depending upon its source. SRFA, LHA and ESHA inhibit the photolysis of anthracene, however, except for SRFA, the other three DOM inhibit the photolysis of pyrene. Fluorescence quenching mechanism is the main inhibiting mechanism, and the binding ability of DOM and PAHs is dominantly correlated with its inhibiting effect. FTIR spectroscopies and UV–Visible were used to analyze the main structural changes of DOM binding PAHs. Generally, the stretching vibration of N–H and C–O of polysaccharide carboxylic acid was the key to affect its binding with anthracene and C–O–C in aliphatic ring participated in the complexation of DOM and pyrene.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#74

 

View it
Name
Description Collagen fibrils are central to the molecular organization of the extracellular matrix (ECM) and to defining the cellular microenvironment. Glycation of collagen fibrils is known to impact on cell adhesion and migration in the context of cancer and in model studies, glycation of collagen molecules has been shown to affect the binding of other ECM components to collagen. Here we use TEM to show that ribose-5-phosphate (R5P) glycation of collagen fibrils – potentially important in the microenvironment of actively dividing cells, such as cancer cells – disrupts the longitudinal ordering of the molecules in collagen fibrils and, using KFM and FLiM, that R5P-glycated collagen fibrils have a more negative surface charge than unglycated fibrils. Altered molecular arrangement can be expected to impact on the accessibility of cell adhesion sites and altered fibril surface charge on the integrity of the extracellular matrix structure surrounding glycated collagen fibrils. Both effects are highly relevant for cell adhesion and migration within the tumour microenvironment.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#75

 

View it
Name
Description The Dongting Lake Basin and the Poyang Lake Basin, both located in the middle reaches of the Yangtze River, provide 30% of the total water volume for the Yangtze River. Under global climate change, precipitation patterns have undergone varying degrees of changes in different regions. Analysing temporal and spatial rainfall variations is important for understanding the variations in capacity of the two lake basins and the water intake variations by the Yangtze River. This study analyses the temporal and spatial variations of the two basins based on 33 rain-gauge data series from 1960–2015, using statistical methods, GIS spatial analysis and the M-K trend test. Our results showed that the annual precipitation generally increased in the Poyang Lake Basin and we found no obvious changes in the Dongting Lake Basin from 1960 to 2015. Seasonal precipitation levels at interannual scales were roughly consistent, but exhibited variability larger by an order of magnitude in the Poyang Lake Basin than in the Dongting Lake Basin. In general, an increasing trend dominated in spring and autumn while a decreasing trend was observed in summer and winter. The increasing trend was significant from the 1990s in the Poyang Lake Basin and from the late 1990s in the Dongting Lake Basin. It was found that annual precipitation with relatively larger anomalies appeared in ENSO (El Niño and Southern Oscillation) years in most cases, such as in 1963, 1997/1998 and 2002, while a few anomalies appeared in the previous or next year around an ENSO year, such as 1971 and 1978. All monthly precipitation periods with relatively larger or smaller anomalies coincided with ENSO events. In addition, El Niño and SOI (Southern Oscillation) events had significant relationships with negative monthly precipitation anomalies. El Niño and the SOI exerted more significant impacts on the Poyang Lake Basin than on the Dongting Lake Basin, which explains the conclusions regarding seasonal precipitation trends as mentioned above.

#Theoretical sciences
Field # Theoretical sciences
Updated 25 February 2020

#76

 

View it
Name
Description Complex contagions — for example when ideas spread across a network — are thought to be different from the simple contagions observed for infections. Simple contagions are now shown to exhibit a key macroscopic characteristic of complex behaviour when they interact.

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#77

 

View it
Name
Description Complex contagions — for example when ideas spread across a network — are thought to be different from the simple contagions observed for infections. Simple contagions are now shown to exhibit a key macroscopic characteristic of complex behaviour when they interact.

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#78

 

View it
Name
Description To develop futuristic technologies like quantum computers, scientists will need to find ways to control photons, the basic particles of light, just as precisely as they can already control electrons, the basic particles in electronic computing. Unfortunately, photons are far more difficult to man

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#79

 

View it
Name
Description Macrocycles are molecules made of large rings of atoms. Despite being relatively big and flexible, the molecules don't always stay “floppy” — they can actually lock themselves into specific shapes and geometries. In manufacturing, controlling the three-dimensional shapes of macrocycles is critica

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#80

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#81

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#82

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 24 February 2020

#83

 

View it
Name
Description TBD

#Theoretical sciences
Field # Theoretical sciences
Updated 23 February 2020

#84

 

View it
Name
Description Scientists have observed a new state of electronic matter on the quantum scale, one that forms when electrons clump together in transit, and it could advance our understanding and application of quantum physics.

#Theoretical sciences
Field # Theoretical sciences
Updated 22 February 2020